24 research outputs found

    RFI-641 inhibits entry of respiratory syncytial virus via interactions with fusion protein

    Get PDF
    AbstractBackground: RFI-641, a small dendrimer-like compound, is a potent and selective inhibitor of respiratory syncytial virus (RSV), which is currently a clinical candidate for the treatment of upper and lower respiratory tract infections caused by RSV. RFI-641 inhibits RSV growth with an IC50 value of 50 nM and prevents syncytia formation in tissue culture. RSV contains of three surface glycoproteins, a small hydrophobic (SH) protein of unknown function, and attachment (G) and fusion (F) proteins that enable binding and fusion of virus, respectively, with target cells. Because of their role in attachment and fusion, the G and F surface proteins are prominent targets for therapeutic intervention. RFI-641 was previously shown to bind purified preparations of RSV fusion protein. Based on this observation, in conjunction with the biological results, it was speculated that the fusion event might be the target of these inhibitors.Results: A fusion assay based upon the relief of self-quenching of octadecyl rhodamine R18 was used to determine effects of the inhibitors on binding and fusion of RSV. The results show that RFI-641 inhibits both RSV–cell binding and fusion events. The inhibition of RSV is mediated via binding to the fusion protein on the viral surface. A closely related analog, WAY-158830, which is much less active in the virus-infectivity assay does not inhibit binding and fusion of RSV with Vero cells.Conclusions: RFI-641, an in vivo active RSV inhibitor, is shown to inhibit both binding and fusion of RSV with cells, events that are early committed steps in RSV entry and pathogenicity. The results described here demonstrate that a non-peptidic, small molecule can inhibit binding and fusion of enveloped virus specifically via interaction with the viral fusion protein

    In silico docking analysis of piperine with cyclooxygenases

    Get PDF
    The structure of 1-[5-(1,3-benzodioxol- 5-yl)-1-oxo-2,4- pentadienyl]piperidine (Piperine), C17H19O3N, a versatile bioactive molecule has been redetermined at 100(2) K by X-ray crystallography to explore their potential utilization in inhibition of prostaglandin release. The crystal structure is stabilized by weak nonclassical intermolecular C-H…O hydrogen bonds and also intermolecular C-H…π interactions. The crystallographic coordinates of the compound were extrapolated to docking studies to elucidate the action of piperine against the enzymes, cyclooxygenases (COX-1 and COX-2) involved in biosynthesis of prostaglandin release. Using AutoDock suite, piperine was docked at the binding site of COX-1 and COX-2 enzyme and a strong affinity (-9.06kcal/mol, Ki =227.73nM and -8.77kcal/mol, Ki = 375.62nM, respectively) was formed by Hydrogen bonds and hydrophobic interactions. These results suggest that piperine can be a promising lead for the development of COX family inhibitors

    Antihyperglycemic and hypolipidemic activity of methanolic extract of Amaranthus viridis leaves in experimental diabetes

    No full text
    To investigate the antihyperglycemic and hypolipidemic effects of methanolic extract of leaves of Amaranthus viridis (MEAV) in normal and Streptozotocin (STZ) induced diabetic rats. The anti-hyperglycemic and hypolipidemic activity of methanolic extract of leaves of Amaranthus viridis was evaluated by using normal and STZ induced diabetic rats at dose of 200 mg/kg and 400 mg/kg by mouth per day for 21 days. Blood glucose levels and body weight was monitored at specific intervals, and different biochemical parameters, serum cholesterol, serum triglyceride, high density lipoprotein, low density lipoprotein, very low density lipoprotein were also assessed in the experimental animals. Histology of pancreas was performed. The statistical data indicated a significant increase in the body weight, decrease in the blood glucose, total cholesterol and serum triglycerides after treatment with MEAV. High density lipoprotein (HDL) cholesterol level was significantly increased when treated with extract. Histologically, focal necrosis was observed in the diabetic rat pancreas; however, was less obvious in treated groups. The MEAV has beneficial effects in reducing the elevated blood glucose level and body weight changes, and improves the lipid profile of STZ induced rats

    Antihyperglycemic and hypolipidemic activity of methanolic extract of Amaranthus viridis leaves in experimental diabetes

    No full text
    To investigate the antihyperglycemic and hypolipidemic effects of methanolic extract of leaves of Amaranthus viridis (MEAV) in normal and Streptozotocin (STZ) induced diabetic rats. The anti-hyperglycemic and hypolipidemic activity of methanolic extract of leaves of Amaranthus viridis was evaluated by using normal and STZ induced diabetic rats at dose of 200 mg/kg and 400 mg/kg by mouth per day for 21 days. Blood glucose levels and body weight was monitored at specific intervals, and different biochemical parameters, serum cholesterol, serum triglyceride, high density lipoprotein, low density lipoprotein, very low density lipoprotein were also assessed in the experimental animals. Histology of pancreas was performed. The statistical data indicated a significant increase in the body weight, decrease in the blood glucose, total cholesterol and serum triglycerides after treatment with MEAV. High density lipoprotein (HDL) cholesterol level was significantly increased when treated with extract. Histologically, focal necrosis was observed in the diabetic rat pancreas; however, was less obvious in treated groups. The MEAV has beneficial effects in reducing the elevated blood glucose level and body weight changes, and improves the lipid profile of STZ induced rats

    Ethyl 5-bromo-3-ethoxycarbonylamino-1-benzofuran-2-carboxylate

    Get PDF
    In the title compound, C14H14BrNO5, the ester group is disordered [occupancy ratio 0.52 (2):0.48 (2)]. The major component is nearly coplanar with the benzofuran plane, subtending a dihedral angle of 7.84 (2)°, while the amide group is twisted out of the benzofuran plane making a dihedral angle of 39.69 (2)°. An intramolecular N—H...O hydrogen bond occurs. In the crystal, pairs of weak C—H...O hydrogen bonds link the molecules into inversion dimers, which are further linked via strong N—H...O hydrogen bonds, generating a zigzag chain extending along [100]
    corecore