3 research outputs found

    Entropy in the Classical and Quantum Polymer Black Hole Models

    Full text link
    We investigate the entropy counting for black hole horizons in loop quantum gravity (LQG). We argue that the space of 3d closed polyhedra is the classical counterpart of the space of SU(2) intertwiners at the quantum level. Then computing the entropy for the boundary horizon amounts to calculating the density of polyhedra or the number of intertwiners at fixed total area. Following the previous work arXiv:1011.5628, we dub these the classical and quantum polymer models for isolated horizons in LQG. We provide exact micro-canonical calculations for both models and we show that the classical counting of polyhedra accounts for most of the features of the intertwiner counting (leading order entropy and log-correction), thus providing us with a simpler model to further investigate correlations and dynamics. To illustrate this, we also produce an exact formula for the dimension of the intertwiner space as a density of "almost-closed polyhedra".Comment: 24 page

    Reconstructing Quantum Geometry from Quantum Information: Spin Networks as Harmonic Oscillators

    Full text link
    Loop Quantum Gravity defines the quantum states of space geometry as spin networks and describes their evolution in time. We reformulate spin networks in terms of harmonic oscillators and show how the holographic degrees of freedom of the theory are described as matrix models. This allow us to make a link with non-commutative geometry and to look at the issue of the semi-classical limit of LQG from a new perspective. This work is thought as part of a bigger project of describing quantum geometry in quantum information terms.Comment: 16 pages, revtex, 3 figure
    corecore