162 research outputs found

    Staphylococcus aureus cell wall maintenance:the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence

    Get PDF
    Staphylococcus aureus is an important human and livestock pathogen that is well-protected against environmental insults by a thick cell wall. Accordingly, the wall is a major target of present-day antimicrobial therapy. Unfortunately, S. aureus has mastered the art of antimicrobial resistance, as underscored by the global spread of methicillin-resistant S. aureus (MRSA). The major cell wall component is peptidoglycan. Importantly, the peptidoglycan network is not only vital for cell wall function, but it also represents a bacterial Achilles' heel. In particular, this network is continuously opened by no less than 18 different peptidoglycan hydrolases (PGHs) encoded by the S. aureus core genome, which facilitate bacterial growth and division. This focuses attention on the specific functions executed by these enzymes, their subcellular localization, their control at the transcriptional and post-transcriptional levels, their contributions to staphylococcal virulence and their overall importance in bacterial homeostasis. As highlighted in the present review, our understanding of the different aspects of PGH function in S. aureus has been substantially increased over recent years. This is important because it opens up new possibilities to exploit PGHs as innovative targets for next-generation antimicrobials, passive or active immunization strategies, or even to engineer them into effective antimicrobial agents. Here, we review the roles of peptidoglycan hydrolases of the Gram-positive bacterial pathogen Staphylococcus aureus in bacterial growth and division, cell wall maintenance, protein localization, pathogenesis and antimicrobial susceptibility

    Recombinant protein secretion by Bacillus subtilis and Lactococcus lactis:pathways, applications, and innovation potential

    Get PDF
    Secreted recombinant proteins are of great significance for industry, healthcare and a sustainable bio-based economy. Consequently, there is an ever-increasing need for efficient production platforms to deliver such proteins in high amounts and high quality. Gram-positive bacteria, particularly bacilli such as Bacillus subtilis, are favored for the production of secreted industrial enzymes. Nevertheless, recombinant protein production in the B. subtilis cell factory can be very challenging due to bottlenecks in the general (Sec) secretion pathway as well as this bacterium's intrinsic capability to secrete a cocktail of highly potent proteases. This has placed another Gram-positive bacterium, Lactococcus lactis, in the focus of attention as an alternative, non-proteolytic, cell factory for secreted proteins. Here we review our current understanding of the secretion pathways exploited in B. subtilis and L. lactis to deliver proteins from their site of synthesis, the cytoplasm, into the fermentation broth. An advantage of this cell factory comparison is that it identifies opportunities for protein secretion pathway engineering to remove or bypass current production bottlenecks. Noteworthy new developments in cell factory engineering are the mini-Bacillus concept, highlighting potential advantages of massive genome minimization, and the application of thus far untapped 'non-classical' protein secretion routes. Altogether, it is foreseen that engineered lactococci will find future applications in the production of high-quality proteins at the relatively small pilot scale, while engineered bacilli will remain a favored choice for protein production in bulk

    A System To Generate Chromosomal Mutations in Lactococcus lactis Which Allows Fast Analysis of Targeted Genes

    Get PDF
    A system for generating chromosomal insertions in lactococci is described. It is based on the conditional replication of lactococcal pWV01-derived Ori+ RepA- vector pORI19, containing lacZα and the multiple cloning site of pUC19. Chromosomal AluI fragments of Lactococcus lactis were cloned in pORI19 in RepA+ helper strain Escherichia coli EC101. The frequency of Campbell-type recombinants, following introduction of this plasmid bank into L. lactis (RepA-), was increased by combining the system with temperature-sensitive pWV01 derivative pVE6007. Transformation of L. lactis MG1363(pVE6007) with the pORI19 bank of lactococcal chromosomal fragments at the permissive temperature allowed replication of several copies of a recombinant plasmid from the bank within a cell because of the provision in trans of RepA-Ts from pVE6007. A temperature shift to 37°C resulted in loss of pVE6007 and integration of the pORI19 derivatives at high frequencies. A bank of lactococcal mutants was made in this way and successfully screened for the presence of two mutations: one in the monocistronic 1.3-kb peptidoglycan hydrolase gene (acmA) and one in the hitherto uncharacterized maltose fermentation pathway. Reintroduction of pVE6007 into the Mal- mutant at 30°C resulted in excision of the integrated plasmid and restoration of the ability to ferment maltose. The integration plasmid (pMAL) was rescued by using the isolated plasmid content of a restored Mal+ colony to transform E. coli EC101. Nucleotide sequencing of the 564-bp chromosomal fragment in pMAL revealed an internal part of an open reading frame of which the translated product showed significant homology with ATP-binding proteins MalK of E. coli, Salmonella typhimurium, and Enterobacter aerogenes and MsmK of Streptococcus mutans. This combined use of two types of conditional replicating pWV01-derived vectors represents a novel, powerful tool for chromosomal gene inactivation, targeting, cloning, and sequencing of the labelled gene

    Different subcellular locations of secretome components of Gram-positive bacteria

    Get PDF
    Gram-positive bacteria contain different types of secretion systems for the transport of proteins into or across the cytoplasmic membrane. Recent studies on subcellular localization of specific components of these secretion systems and their substrates have shown that they can be present at various locations in the cell. The translocons of the general Sec secretion system in the rod-shaped bacterium Bacillus subtilis have been shown to localize in spirals along the cytoplasmic membrane, whereas the translocons in the coccoid Streptococcus pyogenes are located in a microdomain near the septum. In both bacteria the Sec translocons appear to be located near the sites of cell wall synthesis. The Tat secretion system, which is used for the transport of folded proteins, probably localizes in the cytoplasmic membrane and at the cell poles of B. subtilis. In Lactococcus lactis the ABC transporter dedicated to the transport of a small antimicrobial peptide is distributed throughout the membrane. Possible mechanisms for maintaining the localization of these secretion machineries involve their interaction with proteins of the cytoskeleton or components of the cell wall synthesis machinery, or the presence of lipid subdomains surrounding the transport systems
    • …
    corecore