71 research outputs found
Angiographic Applications for Modern Percutaneous Coronary Intervention
This thesis sought to explore contemporary applications of invasive coronary angiography in the era of advanced percutaneous coronary intervention. Firstly, it describes the development and validation of dedicated bifurcation quantitative coronary angiography algorithms, in order to facilitate their analysis in a harmonized, reliable and reproducible manner. Then it presents the use of bifurcation quantitative coronary angiography algorithms in clinical studies, in the context of large registries and randomized trials, and discusses the clinical relevance of angiographic measures. Finally, it explores the prognostic value of angiographic scoring sys
Reproducibility of computed tomography angiography data analysis using semiautomated plaque quantification software: Implications for the design of longitudinal studies
Reproducibility of the quantitative assessment of atherosclerosis by computed tomography coronary angiography (CTCA) is paramount for the design of longitudinal studies. The purpose of this study was to assess the inter- and intra-observer reproducibility using semiautomated CT plaque analysis software in symptomatic individuals. CTCA was performed in 10 symptomatic patients after percutaneous treatment of the culprit lesions and was repeated after 3 years. The plaque quantitative analysis was performed in untreated vessels with mild-tomoderate atherosclerosis and included geometrical and compositional characteristics using semiautomated CT plaque analysis software. A total of 945 matched crosssections from 21 segments were analyzed independently by a second reviewer to assess inter-observer variability; the first observer repeated all the analyses after 3 months to assess intra-observer variability. The observer variability was also compared to the absolute plaque changes detected over time. Agreement was evaluated by Bland-Altman analysis and co
Quantitative multi-modality imaging analysis of a fully bioresorbable stent: a head-to-head comparison between QCA, IVUS and OCT
The bioresorbable vascular stent (BVS) is totally translucent and radiolucent, leading to challenges when using conventional invasive imaging modalities. Agreement between quantitative coronary angiography (QCA), intravascular ultrasound (IVUS) and optical coherence tomography (OCT) in the BVS is unknown. Forty five patients enrolled in the ABSORB cohort B1 study underwent coronary angiography, IVUS and OCT immediately post BVS implantation, and at 6 months. OCT estimated stent length accurately compared to nominal length (95% CI of the difference: −0.19; 0.37 and −0.15; 0.47 mm2 for baseline and 6 months, respectively), whereas QCA incurred consistent underestimation of the same magnitude at both time points (Pearson correlation = 0.806). IVUS yielded low accuracy (95% CI of the difference: 0.77; 3.74 and −1.15; 3.27 mm2 for baseline and 6 months, respectively), with several outliers and random variability test–retest. Minimal lumen area (MLA) decreased substantially between baseline and 6 months on QCA and OCT and only minimally on IVUS (95% CI: 0.11; 0.42). Agreement between the different imaging modalities is poor: worst agreement Videodensitometry-IVUS post-implantation (ICCa 0.289); best agreement IVUS-OCT at baseline (ICCa 0.767). All pairs deviated significantly from linearity (P < 0.01). Passing-Bablok non-parametric orthogonal regression showed constant and proportional bias between IVUS and OCT. OCT is the most accurate technique for measuring stent length, whilst QCA incurs systematic underestimation (foreshortening) and solid state IVUS incurs random error. Volumetric calculations using solid state IVUS are therefore not reliable. There is poor agreement for MLA estimation between all the imaging modalities studied, including IVUS-OCT, hence their values are not interchangeable
Acute procedural and six-month clinical outcome in patients treated with a dedicated bifurcation stent for left main stem disease: the TRYTON LM multicentre registry
Aims: Tryton side branch (SB) reverse culotte stenting has been employed for the treatment of left main (LM) stem bifurcations in patients at high risk for bypass surgery. The aim of this study was to assess acute angiographic results and six-month clinical outcome after implantation of the Tryton stent in the LM.
Methods and results: We studied 52 consecutive patients with LM disease treated in nine European centres. Angiographic and clinical data analysis was performed centrally. Fifty-one of 52 patients (age 68+/-11 yrs, 75% male, 42% unstable angina, SYNTAX score 20 8) were successfully treated with the Tryton stent. Medina class was 1,1,1 in 33 (63%), 1,0,1 in 7(13%), 1,1,0 in 3 (6%), 0,1,1 in 8 (4%) and 0,0,1 in 1 (2%). The Tryton stent on a stepped balloon (diameter 3.5-2.5 mm) was used in 41/51 (80%) of cases. The mean main vessel stent diameter was 3.4+/-0.4 mm with an everolimus-eluting stent employed in 30/51 (59%) of cases. Final kissing balloon dilatation was performed in 48/51 (94%). Acute gain was 1.52+/-0.86 mm in the LM and 0.92+/-0.47 mm in the SB. The angiographic success rate was 100%; the procedural success rate reached 94%. Periprocedural MI occurred in three patients. At six-month follow-up, the TLR rate was 12%, MI 10% and cardiac death 2%. The hierarchical MACE rate at six months was 22%. No cases of definite stent thrombosis occurred.
Conclusions: The use of the Tryton stent for treatment of LM bifurcation disease in combination with a conventional drug-eluting stent is feasible and achieves an optimal angiographic result. Safety of the procedure and six-month outcome are acceptable in this high-risk lesion PCI. Further safety and efficacy studies with long-term outcome assessment of this strategy are warranted
Advanced three-dimensional quantitative coronary angiographic assessment of bifurcation lesions: methodology and phantom validation
Aims: Validation of new three-dimensional (3-D) bifurcation quantitative coronary angiography (QCA) software. Methods and results: Cardiovascular Angiography Analysis System (CAAS 5v10) allows 3-D angiographic reconstructions based on two or more 2-D projection images. Measurements for minimal lumen diameter (MLD), reference vessel diameter (RVD), percent diameter stenosis (DS) and bifurcation angle (BA) were validated against precision manufactured phantom bifurcations. Length measurements were validated against angiographic measurement catheters inserted into a plexiglas bifurcation phantom. In 3-D re Conclusions: Advances in the methodology of 3-D reconstruction and quantitative analysis for bifurcation lesions translated into highly accurate, precise and reproducible measures of diameter, length and BA
- …