19 research outputs found

    The Linkages Between Photosynthesis, Productivity, Growth and Biomass in Lowland Amazonian Forests

    Get PDF
    Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling

    Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data

    Get PDF
    Funding Information: This work is a product of the Global Ecosystems Monitoring (GEM) network (gem.tropicalforests.ox.ac.uk). J.A.G. was funded by the Natural Environment Research Council (NERC; NE/T011084/1 and NE/S011811/1) and the Netherlands Organisation for Scientific Research (NWO) under the Rubicon programme with project number 019.162LW.010. The traits field campaign was funded by a grant to Y.M. from the European Research Council (Advanced Grant GEM-TRAIT: 321131) under the European Union‘s Seventh Framework Programme (FP7/2007-2013), with additional support from NERC Grant NE/D014174/1 and NE/J022616/1 for traits work in Peru, NERC Grant ECOFOR (NE/K016385/1) for traits work in Santarem, NERC Grant BALI (NE/K016369/1) for plot and traits work in Malaysia and ERC Advanced Grant T-FORCES (291585) to Phillips for traits work in Australia. Plot setup in Ghana and Gabon were funded by a NERC Grant NE/I014705/1 and by the Royal Society-Leverhulme Africa Capacity Building Programme. The Malaysia campaign was also funded by NERC GrantNE/K016253/1. Plot inventories in Peru were supported by funding from the US National Science Foundation Long-Term Research in Environmental Biology program (LTREB; DEB 1754647) and the Gordon and Betty Moore Foundation Andes-Amazon Program. Plots inventories in Nova Xavantina (Brazil) were supported by the National Council for Scientific and Technological Development (CNPq), Long Term Ecological Research Program (PELD), Proc. 441244/2016-5, and the Foundation of Research Support of Mato Grosso (FAPEMAT), Project ReFlor, Proc. 589267/2016. During data collection, I.O. was supported by a Marie Curie Fellowship (FP7-PEOPLE-2012-IEF-327990). GEM trait data in Gabon was collected under authorisation to Y.M. and supported by the Gabon National Parks Agency. D.B. was funded by the Fondation Wiener-Anspach. W.D.K. acknowledges support from the Faculty Research Cluster ‘Global Ecology’ of the University of Amsterdam. M.S. was funded by a grant from the Ministry of Education, Youth and Sports of the Czech Republic (INTER-TRANSFER LTT19018). Y.M. is supported by the Jackson Foundation. We thank the two anonymous reviewers and Associate Editor G. Henebry for their insightful comments that helped improved this manuscript.Peer reviewedPostprin

    Gross Primary Productivity of a High Elevation Tropical Montane Cloud Forest

    No full text
    For decades, the productivity of tropical montane cloud forests (TMCF) has been assumed to be lower than in tropical lowland forests due to nutrient limitation, lower temperatures, and frequent cloud immersion, although actual estimates of gross primary productivity (GPP) are very scarce. Here, we present the results of a process-based modeling estimate of GPP, using a soil-plant-atmosphere model, of a high elevation Peruvian TMCF. The model was parameterized with field-measured physiological and structural vegetation variables, and driven with meteorological data from the site. Modeled transpiration corroborated well with measured sap flow, and simulated GPP added up to 16.2 ± SE 1.6 Mg C ha-1 y-1. Dry season GPP was significantly lower than wet season GPP, although this difference was 17% and not caused by drought stress. The strongest environmental controls on simulated GPP were variation of photosynthetic active radiation and air temperature (T air). Their relative importance likely varies with elevation and the local prevalence of cloud cover. Photosynthetic parameters (V cmax and J max) and leaf area index were the most important non-environmental controls on GPP. We additionally compared the modeled results with a recent estimate of GPP of the same Peruvian TMCF derived by the summing of ecosystem respiration and net productivity terms, which added up to 26 Mg C ha-1 y-1. Despite the uncertainties in modeling GPP we conclude that at this altitude GPP is, conservatively estimated, 30-40% lower than in lowland rainforest and this difference is driven mostly by cooler temperatures than changes in other parameters

    ENSO Drives interannual variation of forest woody growth across the tropics

    No full text
    Meteorological extreme events such as El Niño events are expected to affect tropical forest net primary production (NPP) and woody growth, but there has been no large-scale empirical validation of this expectation. We collected a large high–temporal resolution dataset (for 1–13 years depending upon location) of more than 172 000 stem growth measurements using dendrometer bands from across 14 regions spanning Amazonia, Africa and Borneo in order to test how much month-to-month variation in stand-level woody growth of adult tree stems (NPPstem) can be explained by seasonal variation and interannual meteorological anomalies. A key finding is that woody growth responds differently to meteorological variation between tropical forests with a dry season (where monthly rainfall is less than 100 mm), and aseasonal wet forests lacking a consistent dry season. In seasonal tropical forests, a high degree of variation in woody growth can be predicted from seasonal variation in temperature, vapour pressure deficit, in addition to anomalies of soil water deficit and shortwave radiation. The variation of aseasonal wet forest woody growth is best predicted by the anomalies of vapour pressure deficit, water deficit and shortwave radiation. In total, we predict the total live woody production of the global tropical forest biome to be 2.16 Pg C yr21, with an interannual range 1.96–2.26 Pg C yr21 between 1996–2016, and with the sharpest declines during the strong El Niño events of 1997/8 and 2015/6. There is high geographical variation in hotspots of El Niño–associated impacts, with weak impacts in Africa, and strongly negative impacts in parts of Southeast Asia and extensive regions across central and eastern Amazonia. Overall, there is high correlation (r ÂŒ 20.75) between the annual anomaly of tropical forest woody growth and the annual mean of the El Niño 3.4 index, driven mainly by strong correlations with anomalies of soil water deficit, vapour pressure deficit and shortwave radiation. This article is part of the discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’

    What controls variation in carbon use efficiency among Amazonian tropical forests?

    No full text
    Why do some forests produce biomass more efficiently than others? Variations in Carbon Use Efficiency (CUE: total Net Primary Production (NPP)/ Gross Primary Production (GPP)) may be due to changes in wood residence time (Biomass/NPPwood), temperature, or soil nutrient status. We tested these hypotheses in 14, one ha plots across Amazonian and Andean forests where we measured most key components of net primary production (NPP: wood, fine roots, and leaves) and autotrophic respiration (Ra; wood, rhizosphere, and leaf respiration). We found that lower fertility sites were less efficient at producing biomass and had higher rhizosphere respiration, indicating increased carbon allocation to belowground components. We then compared wood respiration to wood growth and rhizosphere respiration to fine root growth and found that forests with residence times 40 yrs. A comparison of rhizosphere respiration to fine root growth showed that rhizosphere growth respiration was significantly greater at low fertility sites. Overall, we found that Amazonian forests produce biomass less efficiently in stands with residence times >40 yrs and in stands with lower fertility, but changes to long-term mean annual temperatures do not impact CUE.This work is a product of the Global Ecosystems Monitoring (GEM) network (gem.tropicalforests.ox.ac.uk) the Andes Biodiversity and Ecosystems Research Group ABERG (andesresearch.org) and the Amazon Forest Inventory Network RAINFOR (www.rainfor.org) research consortia, and was funded by grants from the UK Natural Environment Research Council (Grants NE/D01025X/1, NE/D014174/1), grants to YM and OP from the Gordon and Betty Moore Foundation, and a grant from the EU FP7 GEOCARBON (283080) project. We thank the Servicio Nacional de Areas Naturales Protegidas por el Estado (SERNANP) and personnel of Manu National Park who provided logistical assistance and permission to work in the pro- tected areas in Peru, the Explorers’ Inn at Tambopata, ACCA for use of the Wayqecha Research Station, and IIAP for use of the Allpahuayo Research Station, the Museo Goeldi for access to the Caxiuan~a Research Station, and IPAM for the access to the Tan- guro plots. We also gratefully acknowledge LBA support CNPQ grant 411 457914/2013-0/MCTI/CNPq/FNDCT/LBA/ESE- CAFLOR to ACLD, and NERC and ARC support to PM (NE/ J011002/1, DP170104091). YM is supported by an ERC Advanced Investigator Award GEM-TRAIT (321131) and by the Jackson Foundation. CED is supported by the John Fell Fund and Google

    The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru

    No full text
    Background: The forests of western Amazonia are known to be more dynamic that the better-studied forests of eastern Amazonia, but there has been no comprehensive description of the carbon cycle of a western Amazonian forest. Aims: We present the carbon budget of two forest plots in Tambopata in south-eastern Peru, western Amazonia. In particular, we present, for the first time, the seasonal variation in the detailed carbon budget of a tropical forest. Methods: We measured the major components of net primary production (NPP) and total autotrophic respiration over 3-6 years. Results: The NPP for the two plots was 15.1 ± 0.8 and 14.2 ± 1.0 Mg C ha-1 year-1, the gross primary productivity (GPP) was 35.5 ± 3.6 and 34.5 ± 3.5 Mg C ha-1 year-1, and the carbon use efficiency (CUE) was 0.42 ± 0.05 and 0.41 ± 0.05. NPP and CUE showed a large degree of seasonality. Conclusions: The two plots were similar in carbon cycling characteristics despite the different soils, the most notable difference being high allocation of NPP to canopy and low allocation to fine roots in the Holocene floodplain plot. The timing of the minima in the wet-dry transition suggests they are driven by phenological rhythms rather than being driven directly by water stress. When compared with results from forests on infertile forests in humid lowland eastern Amazonia, the plots have slightly higher GPP, but similar patterns of CUE and carbon allocation

    Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes

    No full text
    Background: Tropical montane cloud forests (TMCF) are unique ecosystems with high biodiversity and large carbon reservoirs. To date there have been limited descriptions of the carbon cycle of TMCF.Aims: We present results on the production, allocation an

    Productivity and carbon allocation in a tropical montane cloud forest in the Peruvian Andes

    No full text
    Background: The slopes of the eastern Andes harbour some of the highest biodiversity on Earth and a high proportion of endemic species. However, there have been only a few and limited descriptions of carbon budgets in tropical montane forest regions.Aims
    corecore