4 research outputs found

    Multiple invasions in urbanized landscapes: interactions between the invasive garden ant Lasius neglectus and Japanese knotweeds (Fallopia spp.)

    Get PDF
    International audienceUrbanized landscapes are the theater of multiple simultaneous biological invasions likely to affect spread dynamics when co-occurring introduced species interact with each other. Interactions between widespread invaders call for particular atten- tion because they are likely to be common and because non-additive outcomes of such associations might induce negative consequences (e.g., enhanced population growth increasing impacts or resistance to control). We explored the invasions of two widespread invasive taxa: the Japanese knotweed species complex Fallopia spp. and the invasive garden ant Lasius neglectus, in the urban area of Lyon (France). First, we investigated landscape habitat preferences as well as co-occurrence rates of the two species. We showed that Fallopia spp. and L. neglectus had broadly overlapping environmental preferences (measured by seven landscape variables), but their landscape co-occurrence pattern was random, indicating independent spread and non-obligatory association. Second, as Fallopia spp. produce extra-floral nectar, we estimated the amount of nectar L. neglectus used under field conditions without ant competitors. We estimated that L. neglectus collected 150–321 kg of nectar in the month of April (when nectar production is peaking) in a 1162 m2 knotweed patch, an amount likely to boost ant population growth. Finally, at six patches of Fallopia spp. surveyed, herbivory levels were low (1–6% loss of leaf surface area) but no relationship between ant abundance (native and invasive) and loss of leaf surface was found. Co-occurrences of Fallopia spp. and L. neglectus are likely to become more common as both taxa colonize landscapes, which could favor the spread and invasion success of the invasive ant

    Invasive in the North: new latitudinal record for Argentine ants in Europe

    No full text
    International audienceEnvironmental niche models predict the presence of the invasive Argentine ant in north-western Europe, especially along all the French Atlantic coast. Yet, the species has never been observed North from the 45th parallel in Europe, suggesting either that current models are wrong or that Argentine ants are already spreading north inconspicuously. Here, we report a 3-hectare wide colony of Argentine ants, detected in 2016 in Nantes, France, which is 300 km north of the former northernmost outdoor population of this species in Europe. COI sequencing revealed that the haplotype of this new colony is the same as the one found in the so-called Catalonian supercolony, which is distinct from the haplotype found over most of the species range in Europe. Our discovery confirms models’ predictions that Argentine ants can colonize north-western Europe and suggests that they might have already reached several other locations along the French Atlantic coast. Detection surveys should be conducted to assess Argentine ants’ invasion patterns in Western France, particularly in high introduction risk areas such as major cities and maritime ports

    Compensatory recruitment allows amphibian population persistence in anthropogenic habitats

    No full text
    : Habitat anthropization is a major driver of global biodiversity decline. Although most species are negatively affected, some benefit from anthropogenic habitat modifications by showing intriguing life-history responses. For instance, increased recruitment through higher allocation to reproduction or improved performance during early-life stages could compensate for reduced adult survival, corresponding to "compensatory recruitment". To date, evidence of compensatory recruitment in response to habitat modification is restricted to plants, limiting understanding of its importance as a response to global change. We used the yellow-bellied toad (Bombina variegata), an amphibian occupying a broad range of natural and anthropogenic habitats, as a model species to test for and to quantify compensatory recruitment. Using an exceptional capture-recapture dataset composed of 21,714 individuals from 67 populations across Europe, we showed that adult survival was lower, lifespan was shorter, and actuarial senescence was higher in anthropogenic habitats, especially those affected by intense human activities. Increased recruitment in anthropogenic habitats fully offset reductions in adult survival, with the consequence that population growth rate in both habitat types was similar. Our findings indicate that compensatory recruitment allows toad populations to remain viable in human-dominated habitats and might facilitate the persistence of other animal populations in such environments
    corecore