2,756 research outputs found

    Clan structure analysis and new physics signals in pp collisions at LHC

    Full text link
    The study of possible new physics signals in global event properties in pp collisions in full phase space and in rapidity intervals accessible at LHC is presented. The main characteristic is the presence of an elbow structure in final charged particle MD's in addition to the shoulder observed at lower c.m. energies.Comment: 9 pages, talk given at Focus on Multiplicity (Bari, Italy, June 2004

    Scenarios for multiplicity distributions in pp collisions in the TeV energy region

    Full text link
    Possible scenarios based on available experimental data and phenomenological knowledge of the GeV energy region are extended to the TeV energy region in the framework of the weighted superposition mechanism of soft and semi-hard events. KNO scaling violations, forward-backward multiplicity correlations, Hq vs. q oscillations and shoulder structures are discussed.Comment: 10 pages, 10 figures, talk given at "Focus on Multiplicity" (Bari, Italy, June 2004

    Maps of zeroes of the grand canonical partition function in a statistical model of high energy collisions

    Full text link
    Theorems on zeroes of the truncated generating function in the complex plane are reviewed. When examined in the framework of a statistical model of high energy collisions based on the negative binomial (Pascal) multiplicity distribution, these results lead to maps of zeroes of the grand canonical partition function which allow to interpret in a novel way different classes of events in pp collisions at LHC c.m. energies.Comment: 17 pages, figures (ps included); added references, some figures enlarged. To appear in J. Phys.

    A Possible Case of Neurogenic Pulmonary Edema in a Sheep following Intracranial Surgery

    Get PDF
    A 3-year-old female crossbred sheep weighing 64 kg was anaesthetized for intracranial surgery as a part of a research project. Premedication and induction of anesthesia were uneventful as well as tracheal intubation. Anesthesia was maintained with isoflurane in a 50% mixture of oxygen and air, fentanyl (5-15 ”g kg-1h-1) and lidocaine (1.8 mg kg-1h-1). During anesthesia, an increased alveolar-arterial oxygen gradient was calculated on the basis of arterial blood gas analysis: inspiratory fraction of oxygen was increased and a recruitment manoeuvre was performed. After 210 minutes of anesthesia, the sheep was let recover with oxygen supplementation under monitoring of pulse-oxymetry, capnography, inspired and expired oxygen, temperature and invasive blood pressure. At tracheal extubation no signs of regurgitation or aspiration were noticed. Twenty-five minutes later, the sheep showed deterioration of neurological status and clonic seizure responsive to diazepam. After transient tachycardia, blood pressure rose acutely and sinus bradycardia followed. Severe tachypnea started in few minutes accompanied by loud respiratory noises and harsh diffuse crackles on both sides of the thorax. Foamy blood nasal exudates discharged from the nostrils. Neurogenic pulmonary edema as a sequel of increased intracranial pressure was suspected and treated with intravenous mannitol (0.5 gkg-1) and furosemide (4 mgKg-1). Hypoxemia was successfully managed with oxygen supplementation. Motor and cognitive functions improved progressively and were deemed normal within 12 hours from the episode, when arterial partial pressure of oxygen was 11.7 kPa (88 mmHg) at room air

    Questions and Remarks About Clans in Multiparticle Dynamics

    Get PDF
    The fact that several important effects in multiparticle dynamics, on which QCD has not yet satisfactory predictions, have been interpreted in terms of the validity of negative binomial (Pascal) regularity and related clan properties at the level of simpler substructures, raises intriguing questions on clan properties in all classes of collisions, the main one being whether clans are observable objects or merely a mathematical concept. We approach this problem by studying clan masses and rapidity distributions in each substructure for e+e- annihilation and hh collisions, and find that such properties can indeed characterise the different components. These results support the idea that clans could be observable, a challenging problem for future experiments.Comment: 11 pages; 3 figures; latex 2e and amsmat

    Fluid phonons and inflaton quanta at the protoinflationary transition

    Full text link
    Quantum and thermal fluctuations of an irrotational fluid are studied across the transition regime connecting a protoinflationary phase of decelerated expansion to an accelerated epoch driven by a single inflaton field. The protoinflationary inhomogeneities are suppressed when the transition to the slow roll phase occurs sharply over space-like hypersurfaces of constant energy density. If the transition is delayed, the interaction of the quasi-normal modes related, asymptotically, to fluid phonons and inflaton quanta leads to an enhancement of curvature perturbations. It is shown that the dynamics of the fluctuations across the protoinflationary boundaries is determined by the monotonicity properties of the pump fields controlling the energy transfer between the background geometry and the quasi-normal modes of the fluctuations. After corroborating the analytical arguments with explicit numerical examples, general lessons are drawn on the classification of the protoinflationary transition.Comment: 30 pages, 3 figure

    Clan structure analysis and QCD parton showers in multiparticle dynamics. An intriguing dialog between theory and experiment

    Full text link
    This paper contains a review of the main results of a search of regularities in collective variables properties in multiparticle dynamics, regularities which can be considered as manifestations of the original simplicity suggested by QCD. The method is based on a continuous dialog between experiment and theory. The paper follows the development of this research line, from its beginnings in the seventies to the current state of the art, discussing how it produced both sound interpretations of the most relevant experimental facts and intriguing perspectives for new physics signals in the TeV energy domain.Comment: 118 pages, 48 figures; table of contents fixed for hyperre

    The intracluster magnetic field power spectrum in Abell 665

    Full text link
    The goal of this work is to investigate the power spectrum of the magnetic field associated with the giant radio halo in the galaxy cluster A665. For this, we present new deep Very Large Array total intensity and polarization observations at 1.4 GHz. We simulated Gaussian random three-dimensional turbulent magnetic field models to reproduce the observed radio halo emission. By comparing observed and synthetic radio halo images we constrained the strength and structure of the intracluster magnetic field. We assumed that the magnetic field power spectrum is a power law with a Kolmogorov index and we imposed a local equipartition of energy density between relativistic particles and field. Under these assumptions, we find that the radio halo emission in A665 is consistent with a central magnetic field strength of about 1.3 micro-G. To explain the azimuthally averaged radio brightness profile, the magnetic field energy density should decrease following the thermal gas density, leading to an averaged magnetic field strength over the central 1 Mpc^3 of about 0.75 micro-G. From the observed brightness fluctuations of the radio halo, we infer that the outer scale of the magnetic field power spectrum is ~450 kpc, and the corresponding magnetic field auto-correlation length is ~100 kpc.Comment: 12 pages, 6 figures, accepted for publication on A&A, language editing. For a high quality version see http://erg.ca.astro.it/preprints/a665_halo

    Gradient expansion(s) and dark energy

    Full text link
    Motivated by recent claims stating that the acceleration of the present Universe is due to fluctuations with wavelength larger than the Hubble radius, we present a general analysis of various perturbative solutions of fully inhomogeneous Einstein equations supplemented by a perfect fluid. The equivalence of formally different gradient expansions is demonstrated. If the barotropic index vanishes, the deceleration parameter is always positive semi-definite.Comment: 17 pages, no figure
    • 

    corecore