157 research outputs found

    Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments

    Get PDF
    The recent efforts aimed at providing neuroscientific explanations of how people perceive and experience architectural environments have largely justified the initial belief in the value of neuroscience for architecture. However, a systematic development of a coherent theoretical and experimental framework is missing. To investigate the neurophysiological reactions related to the appreciation of ambiances, we recorded the electroencephalographic (EEG) signals in an immersive virtual reality during the appreciation of interior designs. Such data have been analyzed according to the working hypothesis that appreciated environments involve embodied simulation mechanisms and circuits mediating approaching stimuli. EEG recordings of 12 healthy subjects have been performed during the perception of three-dimensional interiors that have been simulated in a CAVE system and judged according to dimensions of familiarity, novelty, comfort, pleasantness, arousal and presence. A correlation analysis on personal judgments returned that scores of novelty, pleasantness and comfort are positively correlated, while familiarity and novelty are in negative way. Statistical spectral maps reveal that pleasant, novel and comfortable interiors produce a de-synchronization of the mu rhythm over left sensorimotor areas. Interiors judged more pleasant and less familiar generate an activation of left frontal areas (theta and alpha bands), along an involvement of areas devoted to spatial navigation. An increase in comfort returns an enhancement of the theta frontal midline activity. Cerebral activations underlying appreciation of architecture could involve different mechanisms regulating corporeal, emotional and cognitive reactions. Therefore, it might be suggested that people's experience of architectural environments is intrinsically structured by the possibilities for action

    The enactive approach to architectural experience: A neurophysiological perspective on embodiment, motivation, and affordances

    Get PDF
    From the enactivist perspective, the way people perceptually experience the world, including architectural spaces, is governed by the dynamic sensorimotor activity of the human organism as a whole and is thereby influenced by the particular conditions of man’s embodiment

    Electroencephalographic correlates of sensorimotor integration and embodiment during the appreciation of virtual architectural environments

    Get PDF
    Nowadays there is the hope that neuroscientific findings will contribute to the improvement of building design in order to create environments which satisfy man's demands. This can be achieved through the understanding of neurophysiological correlates of architectural perception. To this aim, the electroencephalographic (EEG) signals of 12 healthy subjects were recorded during the perception of three immersive virtual reality environments (VEs). Afterwards, participants were asked to describe their experience in terms of Familiarity, Novelty, Comfort, Pleasantness, Arousal, and Presence using a rating scale from 1 to 9. These perceptual dimensions are hypothesized to influence the pattern of cerebral spectral activity, while Presence is used to assess the realism of the virtual stimulation. Hence, the collected scores were used to analyze the Power Spectral Density (PSD) of the EEG for each behavioral dimension in the theta, alpha and mu bands by means of time-frequency analysis and topographic statistical maps. Analysis of Presence resulted in the activation of the frontal-midline theta, indicating the involvement of sensorimotor integration mechanisms when subjects expressed to feel more present in the VEs. Similar patterns also characterized the experience of familiar and comfortable VEs. In addition, pleasant VEs increased the theta power across visuomotor circuits and activated the alpha band in areas devoted to visuospatial exploration and processing of categorical spatial relations. Finally, the de-synchronization of the mu rhythm described the perception of pleasant and comfortable VEs, showing the involvement of left motor areas and embodied mechanisms for environment appreciation. Overall, these results show the possibility to measure EEG correlates of architectural perception involving the cerebral circuits of sensorimotor integration, spatial navigation, and embodiment. These observations can help testing architectural hypotheses in order to design environments matching the changing needs of humans

    Neuroelectrical Correlates of Trustworthiness and Dominance Judgments Related to the Observation of Political Candidates

    Get PDF
    The present research investigates the neurophysiological activity elicited by fast observations of faces of real candidates during simulated political elections. We used simultaneous recording of electroencephalographic (EEG) signals as well as galvanic skin response (GSR) and heart rate (HR) as measurements of central and autonomic nervous systems. Twenty healthy subjects were asked to give judgments on dominance, trustworthiness, and a preference of vote related to the politicians’ faces. We used high-resolution EEG techniques to map statistical differences of power spectral density (PSD) cortical activity onto a realistic head model as well as partial directed coherence (PDC) and graph theory metrics to estimate the functional connectivity networks and investigate the role of cortical regions of interest (ROIs). Behavioral results revealed that judgment of dominance trait is the most predictive of the outcome of the simulated elections. Statistical comparisons related to PSD and PDC values highlighted an asymmetry in the activation of frontal cortical areas associated with the valence of the judged trait as well as to the probability to cast the vote. Overall, our results highlight the existence of cortical EEG features which are correlated with the prediction of vote and with the judgment of trustworthy and dominant faces

    Neuroelectrical correlates of trustworthiness and dominance judgments related to the observation of political candidates

    Get PDF
    The present research investigates the neurophysiological activity elicited by fast observations of faces of real candidates during simulated political elections. We used simultaneous recording of electroencephalographic (EEG) signals as well as galvanic skin response (GSR) and heart rate (HR) as measurements of central and autonomic nervous systems. Twenty healthy subjects were asked to give judgments on dominance, trustworthiness, and a preference of vote related to the politicians' faces. We used high-resolution EEG techniques to map statistical differences of power spectral density (PSD) cortical activity onto a realistic head model as well as partial directed coherence (PDC) and graph theory metrics to estimate the functional connectivity networks and investigate the role of cortical regions of interest (ROIs). Behavioral results revealed that judgment of dominance trait is the most predictive of the outcome of the simulated elections. Statistical comparisons related to

    Neuroelectrical Hyperscanning Measures Simultaneous Brain Activity in Humans

    Get PDF
    In this study we illustrate a methodology able to follow and study concurrent and simultaneous brain processes during cooperation between individuals, with non invasive EEG methodologies. We collected data from fourteen pairs of subjects while they were playing a card game with EEG. Data collection was made simultaneously on all the subjects during the card game. An extension of the Granger-causality approach allows us to estimate the functional connection between signals estimated from different Regions of Interest (ROIs) in different brains during the analyzed task. Finally, with the use of graph theory, we contrast the functional connectivity patterns of the two players belonging to the same team. Statistically significant functional connectivities were obtained from signals estimated in the ROIs modeling the anterior cingulate cortex (ACC) and the prefrontal areas described by the Brodmann areas 8 with the signals estimated in all the other modelled cortical areas. Results presented suggested the existence of Granger-sense causal relations between the EEG activity estimated in the prefrontal areas 8 and 9/46 of one player with the EEG activity estimated in the ACC of their companion. We illustrated the feasibility of functional connectivity methodology on the EEG hyperscannings performed on a group of subjects. These functional connectivity estimated from the couple of brains could suggest, in statistical and mathematical terms, the modelled cortical areas that are correlated in Granger-sense during the solution of a particular task. EEG hyperscannings could be used to investigate experimental paradigms where the knowledge of the simultaneous interactions between the subjects have a value

    Selective Functional Movement Assessment (SFMA) Reliability and Proposal of Its Use in Sports

    Get PDF
    Introduction: The Selective Functional Movement Assessment (SFMA) is a functional movement assessment method to observe movement restrictions in individuals with known musculoskeletal disorders, although it has also been used to evaluate healthy athletes of different sports. Aim: The present paper aimed to evaluate the applicability of SFMA in a clinical setting and to verify whether a student can correctly perform it. Methods: An introductory and explanatory email was sent to the subjects, containing the instructions needed to produce a video with SFMA evaluation movements. SFMA methodology was then used to analyze the received videos. The results between interobserver and intraobserver agreement were compared to the literature, considered the gold standard methods. Results: Twenty-eight subjects (17.71 ± 1.96 years aged) were rated. The functional non-painful scenario (FN) has been assigned more frequently by all raters. The student's intra-rater reliability proved to be moderate (Kappa coefficient 0.49). Results for inter-rater reliability showed that the reliability degree between the senior physiotherapist and student before and after their educational path is good (Kappa coefficient 0.60 and 0.62, respectively). Conclusions: The results of this study showed SFMA intra-rater reliability to be moderate, while inter-rater reliability can be considered good. These characteristics make it a valuable tool for sport's needs, even when used by students

    The Track of Brain Activity during the Observation of TV Commercials with the High-Resolution EEG Technology

    Get PDF
    We estimate cortical activity in normal subjects during the observation of TV commercials inserted within a movie by using high-resolution EEG techniques. The brain activity was evaluated in both time and frequency domains by solving the associate inverse problem of EEG with the use of realistic head models. In particular, we recover statistically significant information about cortical areas engaged by particular scenes inserted within the TV commercial proposed with respect to the brain activity estimated while watching a documentary. Results obtained in the population investigated suggest that the statistically significant brain activity during the observation of the TV commercial was mainly concentrated in frontoparietal cortical areas, roughly coincident with the Brodmann areas 8, 9, and 7, in the analyzed population

    On the Use of EEG or MEG Brain Imaging Tools in Neuromarketing Research

    Get PDF
    Here we present an overview of some published papers of interest for the marketing research employing electroencephalogram (EEG) and magnetoencephalogram (MEG) methods. The interest for these methodologies relies in their high-temporal resolution as opposed to the investigation of such problem with the functional Magnetic Resonance Imaging (fMRI) methodology, also largely used in the marketing research. In addition, EEG and MEG technologies have greatly improved their spatial resolution in the last decades with the introduction of advanced signal processing methodologies. By presenting data gathered through MEG and high resolution EEG we will show which kind of information it is possible to gather with these methodologies while the persons are watching marketing relevant stimuli. Such information will be related to the memorization and pleasantness related to such stimuli. We noted that temporal and frequency patterns of brain signals are able to provide possible descriptors conveying information about the cognitive and emotional processes in subjects observing commercial advertisements. These information could be unobtainable through common tools used in standard marketing research. We also show an example of how an EEG methodology could be used to analyze cultural differences between fruition of video commercials of carbonated beverages in Western and Eastern countries

    Grand Field Challenges for Cognitive Neuroergonomics in the Coming Decade

    Get PDF
    Neuroergonomics as defined by Raja Parasuraman is the study of “the brain at work and in everyday life” (Parasuraman, 2003). This rapidly growing research field aims at understanding human brain function underlying the many facets of human interaction with technical systems (Dehais et al., 2020). The term “cognition” is used to describe different processes (e.g., attention, memory, decision making) relevant to human-technology interaction. Cognitive neuroergonomics, then, can be defined as a section of neuroergonomics concerned with the investigation of the neural bases of those cognitive processes involved in the user's interaction with a technical system at work or during everyday life. One of the defining aspects of cognitive neuroergonomics is that it uses insights from analyzing neural dynamics in these settings to inform cognitive theory and models, as well as to improve our understanding of human brain function underlying cognition, in general. To this end, new imaging methods are continuously adapted and used in a wide range of experimental scenarios that cover the entire area of ergonomics from highly controlled laboratory research protocols, to less controlled translational research, to research in the real world with little control over the factors of interest (Parada, 2018). This decreasing level of control is accompanied by an increasing level of ecological validity. Laboratory experiments provide very good control over experimental factors with high internal validity of the investigated constructs but often suffer from low levels of ecological validity. In contrast, real-world experiments might show low internal validity and lack of experimental control but provide high ecological validity that cannot be further improved. Here, the real world is the laboratory (Gramann et al., 2017). Furthermore, with increasing ecological validity, inter-acting with technical systems often involves expanding physical activity of the user. System interactions range from very low input (e.g., interaction with mobile devices; McKendrick, 2019) to larger scale interaction (e.g., Human-Robot Interaction, HRI; Tsarouchi et al., 2016) to very large scale interactions (e.g., assisted navigation; Wunderlich and Gramann, 2020). Active behavior is the basis for physically demanding workplaces as well as less physically challenging tasks that, nonetheless, require body, head and eye movements when users actively seek information or respond to external stimuli (Doshi and Trivedi, 2009). Traditionally, however, active behavior is not allowed in brain imaging protocols because established imaging modalities are usually too heavy to follow participants' movements and movement-related artifacts render the analyses of neural activity difficult (Makeig et al., 2009; Gramann et al., 2011). With cognitive neuroergonomics maturing into a new research area with widespread research questions and methods, the focus should be put back into theory-driven studies of the human brain at work and in everyday life. Good scientific practices have to be adapted to allow for replicable science including the integration of new mobile imaging methods into the existing range of established imaging protocols. New findings have to be related to parameters known from established laboratory protocols and integrated into larger theoretical frameworks that allow for systematic replication as well as the development of robust parameters reflecting cognitive processes. From this perspective, it is our belief that the following challenges will have to be met to further develop this scientific field
    corecore