6 research outputs found

    Characterization of COVID-19-related lung involvement in patients undergoing magnetic resonance T1 and T2 mapping imaging: a pilot study

    Get PDF
    Tissue characterization by mapping techniques is a recent magnetic resonance imaging (MRI) tool that could aid the tissue characterization of lung parenchyma in coronavirus disease-2019 (COVID-19). The aim of the present study was to compare lung MRI findings, including T1 and T2 mapping, in a group of n = 11 patients with COVID-19 pneumonia who underwent a scheduled cardiac MRI, and a cohort of healthy controls. MRI scout images were used to identify affected and remote lung regions within the patients’ cohort and appropriate regions of interest (ROIs) were drawn accordingly. Both lung native T1 and T2 values were significantly higher in the affected areas of patients with COVID-19 as compared to the controls (1375 ms vs. 1201 ms, p = 0.016 and 70 ms vs. 30 ms, p < 0.001, respectively), whereas no significant differences were detected between the remote lung parenchyma of the COVID-19 patients and the controls (both p > 0.05). When a larger ROI was identified, comprising the whole lung parenchyma within the image irrespective of the affected and remote areas, the COVID-19 patients still retained higher native T1 (1278 ms vs. 1149 ms, p = 0.003) and T2 values (38 ms vs. 34 ms, p = 0.04). According to the receiver operator characteristics curves, the T2 value of the affected region retained the higher accuracy for the differentiation of the COVID-19 patients against the controls (area under the curve 0.934, 95% confidence interval 0.826–0.999). These findings, possibly driven by the ability of MRI tissue mapping to detect ongoing inflammation in the lungs of patients with COVID-19, suggest that T1 and T2 mapping of the lung is a feasible approach in this clinical scenario

    Semiquantitative chest CT severity score predicts failure of noninvasive positive-pressure ventilation in patients hospitalized for COVID-19 pneumonia

    No full text
    Noninvasive positive-pressure ventilation (NPPV) emerged as an efficient tool for treatment of COVID-19 pneumonia. The factors influencing NPPV failure still are elusive. The aim of the study was to investigate the relationships between semiquantitative chest computed tomography (CT) scoring and NPPV failure and mortality in patients with COVID-19

    Hindlimb Ischemia Impairs Endothelial Recovery and Increases Neointimal Proliferation in the Carotid Artery

    No full text
    Abstract Peripheral ischemia is associated with higher degree of endothelial dysfunction and a worse prognosis after percutaneous coronary interventions (PCI). However, the role of peripheral ischemia on vascular remodeling in remote districts remains poorly understood. Here we show that the presence of hindlimb ischemia significantly enhances neointima formation and impairs endothelial recovery in balloon-injured carotid arteries. Endothelial-derived microRNAs are involved in the modulation of these processes. Indeed, endothelial miR-16 is remarkably upregulated after vascular injury in the presences of hindlimb ischemia and exerts a negative effect on endothelial repair through the inhibition of RhoGDIα and nitric oxide (NO) production. We showed that the repression of RhoGDIα by means of miR-16 induces RhoA, with consequent reduction of NO bioavailability. Thus, hindlimb ischemia affects negative carotid remodeling increasing neointima formation after injury, while systemic antagonizzation of miR-16 is able to prevent these negative effects
    corecore