41 research outputs found

    Room temperature Bloch surface wave polaritons

    Full text link
    Polaritons are hybrid light-matter quasi-particles that have gathered a significant attention for their capability to show room temperature and out-of-equilibrium Bose-Einstein condensation. More recently, a novel class of ultrafast optical devices have been realized by using flows of polariton fluids, such as switches, interferometers and logical gates. However, polariton lifetimes and propagation distance are strongly limited by photon losses and accessible in-plane momenta in usual microcavity samples. In this work, we show experimental evidence of the formation of room temperature propagating polariton states arising from the strong coupling between organic excitons and a Bloch surface wave. This result, which was only recently predicted, paves the way for the realization of polariton devices that could allow lossless propagation up to macroscopic distances

    Ultrafast flow of interacting organic polaritons

    Full text link
    The strong-coupling of an excitonic transition with an electromagnetic mode results in composite quasi-particles called exciton-polaritons, which have been shown to combine the best properties of their bare components in semiconductor microcavities. However, the physics and applications of polariton flows in organic materials and at room temperature are still unexplored because of the poor photon confinement in such structures. Here we demonstrate that polaritons formed by the hybridization of organic excitons with a Bloch Surface Wave are able to propagate for hundreds of microns showing remarkable third-order nonlinear interactions upon high injection density. These findings pave the way for the studies of organic nonlinear light-matter fluxes and for a technological promising route of dissipation-less on-chip polariton devices working at room temperature.Comment: Improved version with polariton-polariton interactions. 13 pages, 4 figures, supporting 6 pages, 6 figure

    Molecular-Level Switching of Polymer/Nanocrystal Non-Covalent Interactions and Application in Hybrid Solar Cells

    Get PDF
    Hy brid composites obtained upon blending conjugated polymers and colloidal inorganic semiconductor nanocrystals are regarded as attractive photo-active materials for optoelectronic applications. Here we demonstrate that tailoring nanocrystal surface chemistry permits to exert control on non-covalent bonding and electronic interactions between organic and inorganic components. The pendant moieties of organic ligands at the nanocrystal surface do not merely confer colloidal stability while hindering charge separation and transport, but drastically impact morphology of hybrid composites during formation from blend solutions. The relevance of our approach to photovoltaic applications is demonstrated for composites based on poly(3-hexylthiophene) and Pbs nanocrystals, considered as inadequate before the submission of this manuscript, which enable the fabrication of hybrid solar cells displaying a power conversion efficiency that reaches 3 %. Upon (quasi)steady-state and time-resolved analisys of the photo-induced processes in the nanocomposites and their organic and inorganic components, we ascertained that electron transfer occurs at the hybrid interface yielding long-lived separated charge carriers, whereas interfacial hole transfer appears slow. Here we provide a reliable alternative aiming at gaining control over macroscopic optoelectronic properties of polymer/nanocrystal composites by acting at the molecular-level via ligands' pendant moieties, thus opening new possibilities towards efficient solution-processed hybrid solar cells

    Interactions and scattering of quantum vortices in a polariton fluid

    Get PDF
    Quantum vortices, the quantized version of classical vortices, play a prominent role in superfluid and superconductor phase transitions. However, their exploration at a particle level in open quantum systems has gained considerable attention only recently. Here we study vortex pair interactions in a resonant polariton fluid created in a solid-state microcavity. By tracking the vortices on picosecond time scales, we reveal the role of nonlinearity, as well as of density and phase gradients, in driving their rotational dynamics. Such effects are also responsible for the split of composite spin-vortex molecules into elementary half-vortices, when seeding opposite vorticity between the two spinorial components. Remarkably, we also observe that vortices placed in close proximity experience a pull-push scenario leading to unusual scattering-like events that can be described by a tunable effective potential. Understanding vortex interactions can be useful in quantum hydrodynamics and in the development of vortex-based lattices, gyroscopes, and logic devices.Comment: 12 pages, 7 figures, Supplementary Material and 5 movies included in arXi
    corecore