5 research outputs found

    Artificial Intelligence in Emergency Radiology: Where Are We Going?

    No full text
    Emergency Radiology is a unique branch of imaging, as rapidity in the diagnosis and management of different pathologies is essential to saving patients’ lives. Artificial Intelligence (AI) has many potential applications in emergency radiology: firstly, image acquisition can be facilitated by reducing acquisition times through automatic positioning and minimizing artifacts with AI-based reconstruction systems to optimize image quality, even in critical patients; secondly, it enables an efficient workflow (AI algorithms integrated with RIS–PACS workflow), by analyzing the characteristics and images of patients, detecting high-priority examinations and patients with emergent critical findings. Different machine and deep learning algorithms have been trained for the automated detection of different types of emergency disorders (e.g., intracranial hemorrhage, bone fractures, pneumonia), to help radiologists to detect relevant findings. AI-based smart reporting, summarizing patients’ clinical data, and analyzing the grading of the imaging abnormalities, can provide an objective indicator of the disease’s severity, resulting in quick and optimized treatment planning. In this review, we provide an overview of the different AI tools available in emergency radiology, to keep radiologists up to date on the current technological evolution in this field

    Chest X-ray in Emergency Radiology: What Artificial Intelligence Applications Are Available?

    No full text
    Due to its widespread availability, low cost, feasibility at the patient’s bedside and accessibility even in low-resource settings, chest X-ray is one of the most requested examinations in radiology departments. Whilst it provides essential information on thoracic pathology, it can be difficult to interpret and is prone to diagnostic errors, particularly in the emergency setting. The increasing availability of large chest X-ray datasets has allowed the development of reliable Artificial Intelligence (AI) tools to help radiologists in everyday clinical practice. AI integration into the diagnostic workflow would benefit patients, radiologists, and healthcare systems in terms of improved and standardized reporting accuracy, quicker diagnosis, more efficient management, and appropriateness of the therapy. This review article aims to provide an overview of the applications of AI for chest X-rays in the emergency setting, emphasizing the detection and evaluation of pneumothorax, pneumonia, heart failure, and pleural effusion

    Artificial Intelligence in Lung Cancer Imaging: Unfolding the Future

    No full text
    Lung cancer is one of the malignancies with higher morbidity and mortality. Imaging plays an essential role in each phase of lung cancer management, from detection to assessment of response to treatment. The development of imaging-based artificial intelligence (AI) models has the potential to play a key role in early detection and customized treatment planning. Computer-aided detection of lung nodules in screening programs has revolutionized the early detection of the disease. Moreover, the possibility to use AI approaches to identify patients at risk of developing lung cancer during their life can help a more targeted screening program. The combination of imaging features and clinical and laboratory data through AI models is giving promising results in the prediction of patients’ outcomes, response to specific therapies, and risk for toxic reaction development. In this review, we provide an overview of the main imaging AI-based tools in lung cancer imaging, including automated lesion detection, characterization, segmentation, prediction of outcome, and treatment response to provide radiologists and clinicians with the foundation for these applications in a clinical scenario

    Precision Imaging Guidance in the Era of Precision Oncology: An Update of Imaging Tools for Interventional Procedures

    No full text
    Interventional oncology (IO) procedures have become extremely popular in interventional radiology (IR) and play an essential role in the diagnosis, treatment, and supportive care of oncologic patients through new and safe procedures. IR procedures can be divided into two main groups: vascular and non-vascular. Vascular approaches are mainly based on embolization and concomitant injection of chemotherapeutics directly into the tumor-feeding vessels. Percutaneous approaches are a type of non-vascular procedures and include percutaneous image-guided biopsies and different ablation techniques with radiofrequency, microwaves, cryoablation, and focused ultrasound. The use of these techniques requires precise imaging pretreatment planning and guidance that can be provided through different imaging techniques: ultrasound, computed tomography, cone-beam computed tomography, and magnetic resonance. These imaging modalities can be used alone or in combination, thanks to fusion imaging, to further improve the confidence of the operators and the efficacy and safety of the procedures. This article aims is to provide an overview of the available IO procedures based on clinical imaging guidance to develop a targeted and optimal approach to cancer patients
    corecore