52 research outputs found

    Activity of AMP2041 against human and animal multidrug resistant Pseudomonas aeruginosa clinical isolates

    Get PDF
    Background: Antimicrobial resistance is a growing threat to public health. Pseudomonas aeruginosa is a relevant pathogen causing human and animal infections, frequently displaying high levels of resistance to commonly used antimicrobials. The increasing difficulty to develop new effective antibiotics have discouraged investment in this area and only a few new antibiotics are currently under development. An approach to overcome antibiotic resistance could be based on antimicrobial peptides since they offer advantages over currently used microbicides. Methods: The antimicrobial activity of the synthetic peptide AMP2041 was evaluated against 49 P. aeruginosa clinical strains with high levels of antimicrobial resistance, isolated from humans (n = 19) and animals (n = 30). In vitro activity was evaluated by a microdilution assay for lethal dose 90% (LD90), while the activity over time was performed by time-kill assay with 12.5 μg/ml of AMP2014. Evidences for a direct membrane damage were investigated on P. aeruginosa ATCC 27853 reference strain, on animal isolate PA-VET 38 and on human isolate PA-H 24 by propidium iodide and on P. aeruginosa ATCC 27853 by scanning electron microscopy. Results: AMP2041 showed a dose-dependent activity, with a mean (SEM) LD90 of 1.69 and 3.3 μg/ml for animal and human strains, respectively. AMP2041 showed microbicidal activity on P. aeruginosa isolates from a patient with cystic fibrosis (CF) and resistance increased from first infection isolate (LD90 = 0.3 μg/ml) to the mucoid phenotype (LD90 = 10.4 μg/ml). The time-kill assay showed a time-dependent bactericidal effect of AMP2041 and LD90 was reached within 20 min for all the strains. The stain-dead assay showed an increasing of membrane permeabilization and SEM analysis revealed holes, dents and bursts throughout bacterial cell wall after 30 min of incubation with AMP2041. Conclusions: The obtained results assessed for the first time the good antimicrobial activity of AMP2041 on P. aeruginosa strains of human origin, including those deriving from a CF patient. We confirmed the excellent antimicrobial activity of AMP2041 on P. aeruginosa strains derived from dog otitis. We also assessed that AMP2041 antimicrobial activity is linked to changes of the P. aeruginosa cell wall morphology and to the increasing of membrane permeability

    Nitrogen fertiliser value of digested dairy cow slurry, its liquid and solid fractions, and of dairy cow slurry

    Get PDF
    An understanding of crop availability of livestock slurry nitrogen (N) is necessary to maximise crop N use efficiency and to minimise environmental losses. Results from field and laboratory incubation experiments suggest that first-year crop availability of slurry N comes mainly from its ammonium fraction because net mineralisation of organic N is often negligible in the short term. A two-year field experiment during 2011 and 2012 in northern Italy was undertaken with several aims: to estimate the N fertiliser value of raw dairy cow slurry, digested dairy cow slurry, and the liquid and solid fractions of the digested slurry, and to verify if applied ammonium recovery was similar both among slurries and between slurries and inorganic N fertiliser (ammonium sulphate). Different fertilisers were applied before silage maize cultivation followed by an unfertilised Italian ryegrass crop. The results showed that ammonium recovery was significantly higher in mineral-fertilised (75%) versus slurry-fertilised (30%) treatments, except in digested slurry (65%). This indicates that ammonium applied with organic materials is less efficient than when applied with mineral fertiliser. For the digested slurry and its liquid fraction, most of the applied ammonium was available to the maize during its application year (55%) due to a low carbon (C)/organic N ratio. The apparent N recovery of the raw slurry and digested slurry solid fraction increased substantially between the first (-1.4%) and second (20%) years, as these materials had high C/organic N ratios; they likely immobilised N for several months post application, producing residual effects during the Italian ryegrass and next maize crops

    in vitro antimicrobial activity of a gel containing antimicrobial peptide amp2041 chlorhexidine digluconate and tris edta on clinical isolates of pseudomonas aeruginosa from canine otitis

    Get PDF
    Background Pseudomonas aeruginosa (PA) may cause suppurative otitis externa with severe inflammation and ulceration in dogs. Multidrug resistance is commonly reported for this organism, creating a difficult therapeutic challenge. Objective The aim of this study was to evaluate the in vitro antimicrobial activity of a gel containing 0.5 μg/mL of antimicrobial peptide AMP2041, 0.07% chlorhexidine digluconate (CLX), 0.4% Tris and 0.1% EDTA on 30 clinical isolates of PA from canine otitis externa. Materials and Methods Antimicrobial activity was evaluated through minimal bactericidal concentration (MBC). Standardized bacterial suspensions were incubated with different concentrations of the gel at 37°C for 30 min and plated for colony forming unit (CFU) counts. Time-to-kill kinetics were evaluated with the undiluted product and at MBC for each PA strain at 30 s, 1, 5, 10, 15, 30 min, 24 and 48 h. Results The MBC was 1:64 for two of 30 strains, 1:128 for 15 of 30 strains and 1:256 for 13 of 30 strains. The geometric mean was 1:165, equivalent to a concentration of 0.003 μg/mL AMP2041 + 0.0004% CLX + 0.0024%Tris + 0.0006% EDTA. Time-to-kill assays with the undiluted product showed complete bactericidal effect within 30 s for all isolates, whereas at the MBC this effect was reached within 5 min for 20 of 30 isolates and within 30 min for all isolates. Bactericidal activity was maintained after 48 h for all isolates. Conclusion This gel has shown rapid, complete and long-lasting activity against a panel of 30 PA isolates from cases of canine otitis externa

    Antioxidant activity in a set of sorghum landraces and breeding lines

    Get PDF
    Sorghum (Sorghum bicolor L) is becoming an increasingly important crop in the developed world especially as a cereal grain option for patients with celiac disease, being also characterized by a high level of bioactive compounds. It is a good source of phenolic compounds, including phenolic acids, flavonoids and condensed tannins, that express antioxidant capacity and potential health benefits. A group of 210 sorghum genotypes was evaluated in terms of physical parameters and resulted to be characterized by a wide range of 1000-seeds weight (6.93 - 42.67 g) and kernel colour. A sub-set of 121 samples were selected by near infrared spectroscopy for chemical analyses, and revealed a wide range of variability for total antioxidant capacity (6.89 - 172.02 mmol TE kg-1 dm-1), phenols (0.60 - 20.73 g GAE kg-1 dm-1), condensed tannins (0 - 28,362.63 μg CE g-1 dm-1) and flavonoids (0 - 8,138.22 μg CE g-1 dm-1). A high negative correlation was observed between antioxidant compounds and the colour parameters L* and b*; on the contrary, correlation of the same parameters with a* was low and positive. The results of these preliminary analyses highlighted genotypes characterized by light-coloured grains (white or yellow), large seeds, high antioxidant properties but absence of condensed tannins, all traits which make them suitable for food industry

    Etna International Training School of Geochemistry. Science meets Practice

    Get PDF
    Also this year, the “Etna International Training School of Geochemistry. Science meets practice” took place at Mt. Etna, now in its fourth edition. The school was hosted in the historical Volcanological Observatory “Pizzi Deneri”, one of the most important sites of the INGV - Osservatorio Etneo for geochemical and geophysical monitoring. Mount Etna, located in eastern Sicily, is the largest active volcano in Europe and one of the most intensely degassing volcanoes of the world [Allard et al., 1991; Gerlach, 1991]. Mt Etna emits about 1.6 % of global H2O fluxes from arc volcanism [Aiuppa et al., 2008] and 10 % of global average volcanic emission of CO2 and SO2 [D’Alessandro et al., 1997; Caltabiano et al., 2004; Aiuppa et al., 2008; Carn et al., 2017]. Furthermore, Gauthier and Le Cloarec, [1998] underscored that Mt. Etna is an important source of volcanic particles, having a mass flux of particle passively released from the volcano during non-eruptive period estimated between 7 to 23 tons/day [Martin et al., 2008; Calabrese et al., 2011]. In general, Etna is considered to be still under evolution and rather ‘friendly’, which, along with the above, makes it a favorable natural laboratory to study volcanic geochemistry. The Observatory Pizzi Deneri was sponsored by Haroun Tazieff, and it was built in 1978 by the CNR - International Institute of Volcanology under the direction of Prof. Letterio Villari. It is located at the base of the North-East crater (2,850 m a.s.l.), near the Valle del Leone and it was built on the rim of the Ellittico caldera. A picturesque building, consisting of two characteristics domes in front of the breath-taking panorama of the summit craters. Even though it is quite spartan as an accommodation facility, the dormitories, kitchen, seminar room and laboratory are well equipped. In other words, the Pizzi Deneri observatory is a unique place close to the top of the most active volcano of Europe. The observatory lies in a strategic location making it one of the most important sites for monitoring, research and dissemination of the scientific culture. After six field multidisciplinary campaigns (2010-2015) organized by a group of researchers of several institutions (INGV of Palermo, Catania, Naples, Bologna; Universities of Palermo, Florence, Mainz, Heidelberg), the idea of sharing and passing on the experience to the new generation of students has materialized, and the “Etna International Training School of Geochemistry. Science meets practice” was born in 2016. The four editions of the school were partially funded by INGV of Palermo and Catania, European Geoscience Union (EGU), Società Geochimica Italiana (SoGeI) and Associazione Naturalistica Geode. The conceptual idea of the school is to share scientific knowledge and experiences in the geochemical community, using local resources with a low-cost organization in order to allow as many students as possible access to the school. The “Etna International Training School of Geochemistry. Science meets practice” is addressed to senior graduate students, postdoctoral researchers, fellows, and newly appointed assistant professors, aiming to bring together the next generation of researchers active in studies concerning the geochemistry and the budget of volcanic gases. Introduce the participants with innovative direct sampling and remote sensing techniques. Furthermore, it gives young scientists an opportunity to experiment and evaluate new protocols and techniques to be used on volcanic fluid emissions covering a broad variety of methods. The teaching approach includes theoretical sessions (lectures), practical demonstrations and field applications, conducted by international recognized geochemists. We thank all the teachers who helped to make the school possible, among these: Tobias Fischer (University of New Mexico Albuquerque), Jens Fiebig (Institut für Geowissenschaften Goethe-Universität Frankfurt am Main), Andri Stefansson (University of Iceland, Institute of Earth Sciences), Mike Burton (University of Manchester), Nicole Bobrowski (Universität Heidelberg Institute of Environmental Physics and Max Planck Institute for Chemistry), Alessandro Aiuppa (Università di Palermo), Franco Tassi (Università di Firenze), Walter D’Alessandro (INGV of Palermo), Fatima Viveiros (University of the Azores). Direct sampling of high-to-low temperature fumaroles, plume measurement techniques (using CO2/SO2 sensors such as Multi-GAS instruments, MAX-DOAS instruments and UV SO2 cameras, alkaline traps and particle filters), measurement of diffuse soil gas fluxes of endogenous gases (CO2, Hg0, CH4 and light hydrocarbons), sampling of mud volcanoes, groundwaters and bubbling gases. Sampling sites include the active summit craters, eruptive fractures and peripheral areas. The students have shown an active participation both to the lessons and the fieldworks. Most of them describe the school as formative and useful experience for their future researches. Their enthusiasm is the real engine of this school

    Etna International Training School of Geochemistry. Science meets Practice

    Get PDF
    Also this year, the \u201cEtna International Training School of Geochemistry. Science meets practice\u201d took place at Mt. Etna, now in its fourth edition. The school was hosted in the historical Volcanological Observatory \u201cPizzi Deneri\u201d, one of the most important sites of the INGV - Osservatorio Etneo for geochemical and geophysical monitoring. Mount Etna, located in eastern Sicily, is the largest active volcano in Europe and one of the most intensely degassing volcanoes of the world [Allard et al., 1991; Gerlach, 1991]. Mt Etna emits about 1.6 % of global H2O fluxes from arc volcanism [Aiuppa et al., 2008] and 10 % of global average volcanic emission of CO2 and SO2 [D\u2019Alessandro et al., 1997; Caltabiano et al., 2004; Aiuppa et al., 2008; Carn et al., 2017]. Furthermore, Gauthier and Le Cloarec, [1998] underscored that Mt. Etna is an important source of volcanic particles, having a mass flux of particle passively released from the volcano during non-eruptive period estimated between 7 to 23 tons/day [Martin et al., 2008; Calabrese et al., 2011]. In general, Etna is considered to be still under evolution and rather \u2018friendly\u2019, which, along with the above, makes it a favorable natural laboratory to study volcanic geochemistry. The Observatory Pizzi Deneri was sponsored by Haroun Tazieff, and it was built in 1978 by the CNR - International Institute of Volcanology under the direction of Prof. Letterio Villari. It is located at the base of the North-East crater (2,850 m a.s.l.), near the Valle del Leone and it was built on the rim of the Ellittico caldera. A picturesque building, consisting of two characteristics domes in front of the breath-taking panorama of the summit craters. Even though it is quite spartan as an accommodation facility, the dormitories, kitchen, seminar room and laboratory are well equipped. In other words, the Pizzi Deneri observatory is a unique place close to the top of the most active volcano of Europe. The observatory lies in a strategic location making it one of the most important sites for monitoring, research and dissemination of the scientific culture. After six field multidisciplinary campaigns (2010-2015) organized by a group of researchers of several institutions (INGV of Palermo, Catania, Naples, Bologna; Universities of Palermo, Florence, Mainz, Heidelberg), the idea of sharing and passing on the experience to the new generation of students has materialized, and the \u201cEtna International Training School of Geochemistry. Science meets practice\u201d was born in 2016. The four editions of the school were partially funded by INGV of Palermo and Catania, European Geoscience Union (EGU), Societ\ue0 Geochimica Italiana (SoGeI) and Associazione Naturalistica Geode. The conceptual idea of the school is to share scientific knowledge and experiences in the geochemical community, using local resources with a low-cost organization in order to allow as many students as possible access to the school. The \u201cEtna International Training School of Geochemistry. Science meets practice\u201d is addressed to senior graduate students, postdoctoral researchers, fellows, and newly appointed assistant professors, aiming to bring together the next generation of researchers active in studies concerning the geochemistry and the budget of volcanic gases. Introduce the participants with innovative direct sampling and remote sensing techniques. Furthermore, it gives young scientists an opportunity to experiment and evaluate new protocols and techniques to be used on volcanic fluid emissions covering a broad variety of methods. The teaching approach includes theoretical sessions (lectures), practical demonstrations and field applications, conducted by international recognized geochemists. We thank all the teachers who helped to make the school possible, among these: Tobias Fischer (University of New Mexico Albuquerque), Jens Fiebig (Institut f\ufcr Geowissenschaften Goethe-Universit\ue4t Frankfurt am Main), Andri Stefansson (University of Iceland, Institute of Earth Sciences), Mike Burton (University of Manchester), Nicole Bobrowski (Universit\ue4t Heidelberg Institute of Environmental Physics and Max Planck Institute for Chemistry), Alessandro Aiuppa (Universit\ue0 di Palermo), Franco Tassi (Universit\ue0 di Firenze), Walter D\u2019Alessandro (INGV of Palermo), Fatima Viveiros (University of the Azores). Direct sampling of high-to-low temperature fumaroles, plume measurement techniques (using CO2/SO2 sensors such as Multi-GAS instruments, MAX-DOAS instruments and UV SO2 cameras, alkaline traps and particle filters), measurement of diffuse soil gas fluxes of endogenous gases (CO2, Hg0, CH4 and light hydrocarbons), sampling of mud volcanoes, groundwaters and bubbling gases. Sampling sites include the active summit craters, eruptive fractures and peripheral areas. The students have shown an active participation both to the lessons and the fieldworks. Most of them describe the school as formative and useful experience for their future researches. Their enthusiasm is the real engine of this school

    Management of oral chronic pharmacotherapy in patients hospitalized for acute decompensated heart failure

    No full text
    Acute decompensated heart failure (ADHF) is the most common cause of cardiovascular hospitalization. The presentation is characterized by different clinical profiles due to various underlying causes, volume balance and tissue perfusion status. Currently, a variety of pharmacological therapies, including diuretics, betablockers, ACE-inhibitors, angiotensin receptor blockers and digoxin, are usually prescribed in order to treat chronic heart failure (HF) syndromes caused by left ventricular systolic dysfunction. Despite the large number ofHF patients with frequent hospitalizations for decompensation, only a fewstudies have evaluated the management of oral chronic therapies in the clinical setting of ADHF. This article summarizes the information derived from the few published trials on this subject and a therapeutic approach is suggested with respect to the continuation, dose modification or suspension of oral medications. © 2014 Elsevier Ireland Ltd. All rights reserved

    Estimation of milk fat globules distribution in milk using scattering in near infrared region

    No full text
    The interaction between the electromagnetic radiation in the near infrared region and suspensions of small particles in continuous media such as fat globules in milk generates scattering phenomena. The NIR spectrum of whole milk arises from both absorbance due to molecular vibrations and elastic scattering. The amount of photons that are deviated from theirs straight trajectories depends on the wavelength and on the size of the scattering particle. The extraction of the information relate to the size distribution of scattering particles requires the development of a suitable physical model in order to extract the dimensional information about fat globules from NIR spectra. The milk samples were collected monthly for one year from 50 cows (2 breeds) arranged in 6 different farms with different feeding types. All the cows were half sisters with 6 common fathers for Frisean and 3 for Jersey breed. The reference particle size analyses of fat globules were performed using a Mastersizer 2000 (Malvern instruments Ltd., UK) granulometer (laser=633 nm). NIR spectra were collected using a NIRFlex 500 (Buchi, Switzerland) spectrometer in transmission mode using a quartz flux cuvette (pathlength=0.2 mm) at 40\ub0C. The model was developed using both Visual Basic for Excel (Microsoft, USA) and Matlab (The Mathworka, USA). A model based on the Evans Fournier approximation of Mie scattering was developed using the Weibull distribution for the description of the fat globule distribution in calculating the contribution of scattering to the milk transmission spectrum. The inversion of the model was performed using the conjugate gradient method in order to estimate the particle size distribution from the spectra using the regions 1000-1360 and 1580-1800 nm that are free of absorption bands. The correlation between granulometric data and NIR data was of 0.95 for the median diameter with a SEP of 0.14 microns and of 0.92 for volume-surface average diameter. The samples analyzed showed that the particle size distribution of milk fat globules within the two cow breeds had a bigger dependence on the genetic of the cow than on the farm. The method developed in this work can be useful in monitoring cows and creaming processes: small fat globules are richer in phospholipids than big ones and well suited for new functional foods development, while big fat globules are better for whipping purposes

    Development of Semiliquid Ingredients from Grape Skins and Their Potential Impact on the Reducing Capacity of Model Functional Foods

    Get PDF
    Grape skins (GS), which can be considered as reusable coproducts of winemaking, were processed to develop semiliquid ingredients for functional foods, as an alternative to powdered GS, which needs high energy input for drying. Processing of semiliquid GS ingredients included blanching, dilution to obtain dispersions with 2% or 10% of dry solids, milling, homogenization, and pasteurization. The individual phenolic contents and in vitro ferric ion reducing capacity (FRAP) of semiliquid GS ingredients were compared with those of air-dried and freeze-dried GS. With respect to freeze-dried GS, the recovery of FRAP values was ~75% for both air-dried GS and 2% GS dispersion and 59% for 10% GS dispersion. The average particle size diameters of solids in semiliquid GS ingredients were similar to those observed in commercial apple skin products. Possible applications of GS semiliquid ingredients to increase the reducing capacity of food 10 times include formulation into beverages and ice-type desserts and use in bakery products
    corecore