29 research outputs found

    Zika Virus: A New Therapeutic Candidate for Glioblastoma Treatment

    No full text
    Glioblastoma (GBM) is the most aggressive among the neurological tumors. At present, no chemotherapy or radiotherapy regimen is associated with a positive long-term outcome. In the majority of cases, the tumor recurs within 32–36 weeks of initial treatment. The recent discovery that Zika virus (ZIKV) has an oncolytic action against GBM has brought hope for the development of new therapeutic approaches. ZIKV is an arbovirus of the Flaviviridae family, and its infection during development has been associated with central nervous system (CNS) malformations, including microcephaly, through the targeting of neural stem/progenitor cells (NSCs/NPCs). This finding has led various groups to evaluate ZIKV’s effects against glioblastoma stem cells (GSCs), supposedly responsible for GBM onset, progression, and therapy resistance. While preliminary data support ZIKV tropism toward GSCs, a more accurate study of ZIKV mechanisms of action is fundamental in order to launch ZIKV-based clinical trials for GBM patients

    Galectin-9 and Interferon-Gamma Are Released by Natural Killer Cells upon Activation with Interferon-Alpha and Orchestrate the Suppression of Hepatitis C Virus Infection

    No full text
    Natural killer (NK) cells mount an immune response against hepatitis C virus (HCV) infection and can be activated by several cytokines, including interleukin-2 (IL-2), IL-15, and interferon-alpha (IFN-α). By exploiting the Huh7.5 hepatoma cell line infected with the HCV JFH1 genome, we provide novel insights into the antiviral effector functions of human primary NK cells after cytokine stimulation. NK cells activated with IFN-α (IFNα-NKs) had enhanced contact-dependent and -independent responses as compared with NK cells activated with IL-2/IL-15 (IL2/IL15-NKs) and could inhibit HCV replication both in vitro and in vivo. Importantly, IFN-α, but not IL-2/IL-15, protected NK cells from the functional inhibition exerted by HCV. By performing flow cytometry, multiplex cytokine profiling, and mass-spectrometry-based proteomics, we discovered that IFNα-NKs secreted high levels of galectin-9 and interferon-gamma (IFN-γ), and by conducting neutralization assays, we confirmed the major role of these molecules in HCV suppression. We speculated that galectin-9 might act extracellularly to inhibit HCV binding to host cells and downstream infection. In silico approaches predicted the binding of HCV envelope protein E2 to galectin-9 carbohydrate-recognition domains, and co-immunoprecipitation assays confirmed physical interaction. IFN-γ, on the other hand, triggered the intracellular expressions of two antiviral gate-keepers in target cells, namely, myxovirus-1 (MX1) and interferon-induced protein with tetratricopeptide repeats 1 (IFIT1). Collectively, our data add more complexity to the antiviral innate response mediated by NK cells and highlight galectin-9 as a key molecule that might be exploited to neutralize productive viral infection

    Neurological Screening in Elderly Liver Transplantation Candidates: A Single Center Experience

    No full text
    Background: Cerebral small vessels disease (cSVD) is an age-related disorder and risk factor for stroke and cognitive/motor impairments. Neurological complications (NCs) are among the causes of adverse outcomes in older liver transplant recipients. This study sought to determine whether cSVD predicts acute NCs in over 65-year-old liver transplant patients. Methods: Data were collected, from a retrospective medical chart review, of 22 deceased donor liver transplant recipients aged 65 years or older with a pre-operative brain magnetic resonance imaging (MRI). We used the Fazekas score (0–3) as a quantitative measurement of the vascular lesion load seen in the MRI. We analyzed all post-operative acute NCs occurring during the hospital stay and any other non-NC. Results: cSVD was recognized in all patients. Neurological complications (NCs) occurred in 18.1% of patients with toxic-metabolic encephalopathy the most frequent diagnosis (13.64%). More severe cSVD was associated with seizures (p = 0.0362), longer hospital stay (p 0.0299), and disability (p 0.0134). In our elderly cohort, hepatic encephalopathy (HE) (p 0.0287) and ascites (p 0.0270) were predictors of NCs after liver transplantation. Ascites and/or variceal bleeding and severity of liver disease were associated with adverse post-operative outcomes. The small sample size limited the statistical analysis power. Conclusions: We present the preliminary data of a single-center retrospective study aimed at understanding the cSVD role on NCs and non-NCs after a liver transplantation in elderly patients. This would encourage a more appropriate multicenter prospective study that will definitely confirm if a neurological screening in old age liver transplant candidates is appropriate

    HCV replication in gastrointestinal mucosa: Potential extra-hepatic viral reservoir and possible role in HCV infection recurrence after liver transplantation.

    No full text
    Hepatitis C virus (HCV) predominantly infects hepatocytes, although it is known that receptors for viral entry are distributed on a wide array of target cells. Chronic HCV infection is indeed characterized by multiple non-liver manifestations, suggesting a more complex HCV tropism extended to extrahepatic tissues and remains to be fully elucidated. In this study, we investigated the gastrointestinal mucosa (GIM) as a potential extrahepatic viral replication site and its contribution to HCV recurrence.We analyzed GIM biopsies from a cohort of 76 patients, 11 of which were HCV-negative and 65 HCV-positive. Of these, 54 biopsies were from liver-transplanted patients. In 29 cases, we were able to investigate gastrointestinal biopsies from the same patient before and after transplant. To evaluate the presence of HCV, we looked for viral antigens and genome RNA, whilst to assess viral replicative activity, we searched for the replicative intermediate minus-strand RNA. We studied the genetic diversity and the phylogenetic relationship of HCV quasispecies from plasma, liver and gastrointestinal mucosa of HCV-liver-transplanted patients in order to assess HCV compartmentalization and possible contribution of gastrointestinal variants to liver re-infection after transplantation.Here we show that HCV infects and replicates in the cells of the GIM and that the favorite hosts were mostly enteroendocrine cells. Interestingly, we observed compartmentalization of the HCV quasispecies present in the gastrointestinal mucosa compared to other tissues of the same patient. Moreover, the phylogenetic analysis revealed a high similarity between HCV variants detected in gastrointestinal mucosa and those present in the re-infected graft.Our results demonstrated that the gastrointestinal mucosa might be considered as an extrahepatic reservoir of HCV and that could contribute to viral recurrence. Moreover, the finding that HCV infects and replicates in neuroendocrine cells opens new perspectives on the role of these cells in the natural history of HCV infection

    Immune Response after the Fourth Dose of SARS-CoV-2 mRNA Vaccine Compared to Natural Infection in Three Doses’ Vaccinated Solid Organ Transplant Recipients

    No full text
    Solid organ transplant recipients (SOTRs) show higher rates of COVID-19 breakthrough infection than the general population, and nowadays, vaccination is the key preventative strategy. Nonetheless, SOTRs show lower vaccine efficacy for the prevention of severe COVID-19. Moreover, the emergence of new SARS-CoV-2 variants of concern has highlighted the need to improve vaccine-induced immune responses by the administration of repeated booster doses. In this study, we analyzed the humoral and cellular responses in a cohort of 25 SOTRs, including 15 never-infected SOTRs who received the fourth dose of the mRNA vaccine and 10 SOTRs who contracted SARS-CoV-2 infection after the third dose. We analyzed the serum IgG and IgA levels through CLIA or ELISA, respectively, and the Spike-specific T cells by ELISpot assay. We report a significant increase in anti-Spike IgG and no differences in IgA secretion in both groups of patients before and after the booster dose or the natural infection. Still, we show higher IgA levels in recovered SOTRs compared to the fourth dose recipients. Conversely, we show the maintenance of a positive Spike-specific T-cell response in SOTRs who received the fourth dose, which, instead, was significantly increased in SOTRs who contracted the infection. Our results suggest that the booster, either through the fourth dose or natural infection, in vulnerable poor responder SOTRs, improves both humoral and cellular-specific immune responses against SARS-CoV-2

    Analysis of the Specific Immune Response after the Third Dose of mRNA COVID-19 Vaccines in Organ Transplant Recipients: Possible Spike-S1 Reactive IgA Signature in Protection from SARS-CoV-2 Infection

    No full text
    Background: Several studies have indicated that anti-SARS-CoV-2 mRNA vaccinations are less effective in inducing robust immune responses among solid organ transplant recipients (SOTRs) compared with the immunocompetent. The third dose of vaccine in SOTRs showed promising results of immunogenicity, even though clinical studies have suggested that immunocompromised subjects are less likely to build a protective immune response against SARS-CoV-2 resulting in lower vaccine efficacy for the prevention of severe COVID-19. Methods: Serological IgG and IgA were analyzed through CLIA or ELISA, respectively, while Spike-specific T cells were detected by ELISpot assay after the second and third dose of vaccine in 43 SOTRs. Results: The third dose induced an improvement in antibody response against SARS-CoV-2. We also reported a strong correlation between specific humoral and cellular responses after the third dose, even though we did not see significant changes in the magnitude of the SARS-CoV-2-specific T cell response. SOTRs who contracted the SARS-CoV-2 infection after the third dose, despite eliciting a positive IgG response, failed to mount an anti-Spike-S1 IgA response, both after the third dose and after SARS-CoV-2 infection. Conclusions: We can conclude that serum IgA detection can be helpful, along with IgG detection, for the evaluation of vaccine efficacy, principally in fragile subjects at high risk of infection

    Long-Term Effectiveness of BNT162b2 Pfizer-BioNTech mRNA-Based Vaccine on B Cell Compartment: Efficient Recall of SARS-CoV-2-Specific Memory B Cells

    No full text
    At present, there is a lack of clinical evidence about the impact and long-term durability of the immune response induced by the third dose of mRNA vaccines. In this study, we followed up the B cell compartment behavior in a cohort of immunocompetent individuals three and six months after the third dose of vaccine. During this period, some subjects contracted the virus. In uninfected vaccinated subjects, we did not report any changes in serum spike-specific IgG levels, with a significant reduction in IgA. Instead, subjects recovered from natural infection showed a significant increase in both specific IgG and IgA. Moreover, we showed a time-related decrease in IgG neutralizing potential to all SARS-CoV-2 variants of concern (VOC) in uninfected compared to recovered subjects, who displayed an increased neutralizing ability, particularly against the omicron variant. Finally, we underlined the presence of a pool of SARS-CoV-2-specific B cells in both groups that are prone to respond to restimulation, as demonstrated by their ability to differentiate into plasma cells and to produce anti-SARS-CoV-2-specific immunoglobulins. These data lead us to assert the long-term effectiveness of the BNT162b2 vaccine in contrasting the severe form of the pathology and prevent COVID-19-associated hospitalization

    Specific Anti-SARS-CoV-2 Humoral and Cellular Immune Responses After Booster Dose of BNT162b2 Pfizer-BioNTech mRNA-Based Vaccine: Integrated Study of Adaptive Immune System Components

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is modifying human activity all over the world with significant health and economic burden. The advent of the SARS-CoV-2 pandemic prompted the scientific community to learn the virus dynamics concerning transmissibility, epidemiology, and usefulness of vaccines in fighting emerging health hazards. Pieces of evidence suggest that the first and second doses of mRNA vaccines induce a significant antibody response in vaccinated subjects or patients who recovered from SARS-CoV-2 infection, demonstrating the importance of the previously formed memory. The aim of this work has been to investigate the effects of BNT162b2 Pfizer-BioNTech mRNA-based vaccine booster dose in a cohort of 11 uninfected immunocompetent (ICs), evaluating the humoral and cellular responses, with more carefulness on memory B and T cells. Our findings underscore the potential benefit of the third dose of mRNA vaccine on the lifespan of memory B and T cells, suggesting that booster doses could increase protection against SARS-CoV-2 infection

    Osteosarcoma cell-derived exosomes affect tumor microenvironment by specific packaging of microRNAs

    No full text
    Bone microenvironment provides growth and survival signals essential for osteosarcoma (OS) initiation and progression. OS cells regulate communications inside tumor microenvironment through different ways and, among all, tumor-derived exosomes support cancer progression and metastasis. To define the contribution of OS-derived exosomes inside the microenvironment, we investigated the effects induced in bone remodelling mechanism and tumor angiogenesis. We demonstrated that exosomes promoted osteoclasts differentiation and bone resorption activity. Furthermore, exosomes potentiated tube formation of endothelial cells and increased angiogenic markers expression. We therefore investigated the miRNA cargo from exosomes and their parental cells by performing small RNA sequencing through NGS Illumina platform. Hierarchical clustering highlighted a unique molecular profile of exosomal miRNA; bioinformatic analysis by DIANA-mirPath revealed that miRNAs identified take part in various biological processes and carcinogenesis. Among these miRNAs, some were already known for their involvement in the tumor microenvironment establishment, as miR-148a and miR-21-5p. Enforced expression of miR-148a and miR-21-5p in Raw264.7 and Huvec cells recapitulated the effects induced by exosomes. Overall, our study highlighted the importance of OS exosomes in tumor microenvironment, also by a specific packaging of miRNAs
    corecore