115 research outputs found
Multifactor Dimensionality Reduction Reveals a Three-Locus Epistatic Interaction Associated with Susceptibility to Pulmonary Tuberculosis
Background:
Identifying high-order genetics associations with non-additive (i.e. epistatic) effects in population-based studies of common human diseases is a computational challenge. Multifactor dimensionality reduction (MDR) is a machine learning method that was designed specifically for this problem. The goal of the present study was to apply MDR to mining high-order epistatic interactions in a population-based genetic study of tuberculosis (TB). Results:
The study used a previously published data set consisting of 19 candidate single-nucleotide polymorphisms (SNPs) in 321 pulmonary TB cases and 347 healthy controls from Guniea-Bissau in Africa. The ReliefF algorithm was applied first to generate a smaller set of the five most informative SNPs. MDR with 10-fold cross-validation was then applied to look at all possible combinations of two, three, four and five SNPs. The MDR model with the best testing accuracy (TA) consisted of SNPs rs2305619, rs187084, and rs11465421 (TA = 0.588) in PTX3, TLR9 and DC-Sign, respectively. A general 1000-fold permutation test of the null hypothesis of no association confirmed the statistical significance of the model (p = 0.008). An additional 1000-fold permutation test designed specifically to test the linear null hypothesis that the association effects are only additive confirmed the presence of non-additive (i.e. nonlinear) or epistatic effects (p = 0.013). An independent information-gain measure corroborated these results with a third-order epistatic interaction that was stronger than any lower-order associations. Conclusions:
We have identified statistically significant evidence for a three-way epistatic interaction that is associated with susceptibility to TB. This interaction is stronger than any previously described one-way or two-way associations. This study highlights the importance of using machine learning methods that are designed to embrace, rather than ignore, the complexity of common diseases such as TB. We recommend future studies of the genetics of TB take into account the possibility that high-order epistatic interactions might play an important role in disease susceptibility
Artificial Intelligence and Amikacin Exposures Predictive of Outcomes in Multidrug-Resistant Tuberculosis Patients
Aminoglycosides such as amikacin continue to be part of the backbone of treatment of multidrug-resistant tuberculosis (MDR- TB). We measured amikacin concentrations in 28 MDR-TB patients in Botswana receiving amikacin therapy together with oral levofloxacin, ethionamide, cycloserine, and pyrazinamide and calculated areas under the concentration-time curves from 0 to 24 h (AUC0 –24). The patients were followed monthly for sputum culture conversion based on liquid cultures. The median duration of amikacin therapy was 184 (range, 28 to 866) days, at a median dose of 17.30 (range 11.11 to 19.23) mg/kg. Only 11 (39%) pa- tients had sputum culture conversion during treatment; the rest failed. We utilized classification and regression tree analyses (CART) to examine all potential predictors of failure, including clinical and demographic features, comorbidities, and amikacin peak concentrations (Cmax), AUC0 –24, and trough concentrations. The primary node for failure had two competing variables, Cmax of \u3c67 mg/liter and AUC0 –24 of \u3c568.30 mg · h/L; weight of \u3e41 kg was a secondary node with a score of 35% relative to the primary node. The area under the receiver operating characteristic curve for the CART model was an R2 �� 0.90 on posttest. In patients weighing \u3e41 kg, sputum conversion was 3/3 (100%) in those with an amikacin Cmax of \u3e67 mg/liter versus 3/15 (20%) in those with a Cmax of \u3c67 mg/liter (relative risk [RR] �� 5.00; 95% confidence interval [CI], 1.82 to 13.76). In all patients who had both amikacin Cmax and AUC0 –24 below the threshold, 7/7 (100%) failed, compared to 7/15 (47%) of those who had these parameters above threshold (RR �� 2.14; 95% CI, 1.25 to 43.68). These amikacin dose-schedule patterns and exposures are virtually the same as those identified in the hollow-fiber system model
CD4 intragenic SNPs associate with HIV-2 plasma viral load and CD4 count in a community-based study from Guinea-Bissau, West Africa.
OBJECTIVES: The human genetics of HIV-2 infection and disease progression is understudied. Therefore, we studied the effect of variation in 2 genes that encode products critical to HIV pathogenesis and disease progression: CD4 and CD209. DESIGN: This cross-sectional study consisted of 143 HIV-2, 30 HIV-1 + HIV-2 and 29 HIV-1-infected subjects and 194 uninfected controls recruited from rural Guinea-Bissau. METHODS: We genotyped 14 CD4 and 4 CD209 single nucleotide polymorphisms (SNPs) that were tested for association with HIV infection, HIV-2 plasma viral load (high vs. low), and CD4 T-cell count (high vs. low). RESULTS: The most significant association was between a CD4 haplotype rs11575097-rs10849523 and high viral load [odds ratio (OR): = 2.37, 95% confidence interval (CI): 1.35 to 4.19, P = 0.001, corrected for multiple testing], suggesting increased genetic susceptibility to HIV-2 disease progression for individuals carrying the high-risk haplotype. Significant associations were also observed at a CD4 SNP (rs2255301) with HIV-2 infection (OR: = 2.36, 95% CI: 1.19 to 4.65, P = 0.01) and any HIV infection (OR: = 2.50, 95% CI: 1.34 to 4.69, P = 0.004). CONCLUSIONS: Our results support a role of CD4 polymorphisms in HIV-2 infection, in agreement with recent data showing that CD4 gene variants increase risk to HIV-1 in Kenyan female sex workers. These findings indicate at least some commonality in HIV-1 and HIV-2 susceptibility
Common polymorphic variation in the genetically diverse African insulin gene and its association with size at birth.
The insulin variable number of tandem repeats (INS VNTR) has been variably associated with size at birth in non-African populations. Small size at birth is a major determinant of neonatal mortality, so the INS VNTR may influence survival. We tested the hypothesis, therefore, that genetic variation around the INS VNTR in a rural Gambian population, who experience seasonal variation in nutrition and subsequently birth weight, may be associated with foetal and early growth. Six polymorphisms flanking the INS VNTR were genotyped in over 2,500 people. Significant associations were detected between the maternally inherited SNP 27 (rs689) allele and birth length [effect size 17.5 (5.2-29.8) mm; P = 0.004; n = 361]. Significant associations were also found between the maternally inherited African-specific SNP 28 (rs5506) allele and post-natal weight gain [effect size 0.19 (0.05-0.32) z score points/year; P = 0.005; n = 728). These results suggest that in the Gambian population studied there are associations between polymorphic variation in the genetically diverse INS gene and foetal and early growth characteristics, which contribute to overall polygenic associations with these traits
A 530kb YAC contig tightly linked to the Friedreich ataxia locus contains five CpG clusters and a new highly polymorphic microsatellite
Friedreich ataxia (FA) is a severe autosomal recessive neurodegenerative disease. The defective gene has been previously assigned to chromosome 9q13-q21 by demonstration of tight linkage to the two independent loci D9S15 and D9S5. Linkage data indicate that FRDA is at less than 1 c M from both markers. Previous physical mapping has shown that probes defining D9S15 (MCT112) and D9S5 (26P) are less than 260kb apart and are surrounded by at least six CpG clusters within 450 kb, which might indicate the presence of “candidate” genes for FA. We isolated and characterized a 530 kb YAC (yeast artificial chromosome) contig that contains five of the CpG clusters. The YACs were used to search for new polymorphic markers needed to map FRDA precisely with respect to the cloned segment. In particular, we found a (CA) n microsatellite polymorphism, GS4, that detects 13 alleles with a PIC value of 0.83 and allows the definition of haplotypes extending over 310kb when used in combination with polymorphic markers at D9S5 and D9S15.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47632/1/439_2004_Article_BF00219179.pd
Interferon-gamma polymorphisms and risk of iron deficiency and anaemia in Gambian children
Background: Anaemia is a major public health concern especially in African children living in malaria-endemic regions. Interferon-gamma (IFN-?) is elevated during malaria infection and is thought to influence erythropoiesis and iron status. Genetic variants in the IFN-? gene (IFNG) are associated with increased IFN-? production. We investigated putative functional single nucleotide polymorphisms (SNPs) and haplotypes of IFNG in relation to nutritional iron status and anaemia in Gambian children over a malaria season. Methods: We used previously available data from Gambian family trios to determine informative SNPs and then used the Agena Bioscience MassArray platform to type five SNPs from the IFNG gene in a cohort of 780 Gambian children. We also measured haemoglobin and biomarkers of iron status and inflammation at the start and end of a malaria season. Results: We identified five IFNG haplotype-tagging SNPs (IFNG-1616 [rs2069705], IFNG+874 [rs2430561], IFNG+2200 [rs1861493], IFNG+3234 [rs2069718] and IFNG+5612 [rs2069728]). The IFNG+2200C [rs1861493] allele was associated with reduced haemoglobin concentrations (adjusted ? -0.44 [95% CI -0.75, -0.12]; Bonferroni adjusted P = 0.03) and a trend towards iron deficiency compared to wild-type at the end of the malaria season in multivariable models adjusted for potential confounders. A haplotype uniquely identified by IFNG+2200C was similarly associated with reduced haemoglobin levels and trends towards iron deficiency, anaemia and iron deficiency anaemia at the end of the malaria season in models adjusted for age, sex, village, inflammation and malaria parasitaemia. Conclusion: We found limited statistical evidence linking IFNG polymorphisms with a risk of developing iron deficiency and anaemia in Gambian children. More definitive studies are needed to investigate the effects of genetically influenced IFN-? levels on the risk of iron deficiency and anaemia in children living in malaria-endemic areas.</ns4:p
MCP1 SNPs and Pulmonary Tuberculosis in Cohorts from West Africa, the USA and Argentina: Lack of Association or Epistasis with IL12B Polymorphisms
The monocyte chemotactic protein-1 (MCP-1) is a chemokine that plays an important role in the recruitment of monocytes to M. tuberculosis infection sites, and previous studies have reported that genetic variants in MCP1 are associated with differential susceptibility to pulmonary tuberculosis (PTB). We examined eight MCP1 single nucleotide polymorphisms (SNPs) in a multi-ethnic, case-control design that included: 321 cases and 346 controls from Guinea-Bissau, 258 cases and 271 controls from The Gambia, 295 cases and 179 controls from the U.S. (African-Americans), and an additional set of 237 cases and 144 controls of European ancestry from the U.S. and Argentina. Two locus interactions were also examined for polymorphisms in MCP1 and interleukin 12B (IL12B), another gene implicated in PTB risk. Examination of previously associated MCP1 SNPs rs1024611 (−2581A/G), rs2857656 (−362G/C) and rs4586 (+900C/T) did not show evidence for association. One interaction between rs2857656 and IL12B SNP rs2288831 was observed among Africans but the effect was in the opposite direction in Guineans (OR = 1.90, p = 0.001) and Gambians (OR = 0.64, p = 0.024). Our data indicate that the effect of genetic variation within MCP1 is not clear cut and additional studies will be needed to elucidate its role in TB susceptibility
Host Genetic Factors and Vaccine-Induced Immunity to HBV Infection: Haplotype Analysis
Hepatitis B virus (HBV) infection remains a significant health burden world-wide, although vaccines help decrease this problem. We previously identified associations of single nucleotide polymorphisms in several candidate genes with vaccine-induced peak antibody level (anti-HBs), which is predictive of long-term vaccine efficacy and protection against infection and persistent carriage; here we report on a haplotype-based analysis. A total of 688 SNPs from 117 genes were examined for a two, three and four sliding window haplotype analysis in a Gambian cohort. Analysis was performed on 197 unrelated individuals, 454 individuals from 174 families, and the combined sample (N = 651). Global and individual haplotype association tests were carried out (adjusted for covariates), employing peak anti-HBs level as outcome. Five genes (CD44, CD58, CDC42, IL19 and IL1R1) had at least one significant haplotype in the unrelated or family analysis as well as the combined analysis. Previous single locus results were confirmed for CD44 (combined global p = 9.1×10−5 for rs353644-rs353630-rs7937602) and CD58 (combined global p = 0.008 for rs1414275-rs11588376-rs1016140). Haplotypes in CDC42, IL19 and IL1R1 also associated with peak anti-HBs level. We have identified strong haplotype effects on HBV vaccine-induced antibody level in five genes, three of which, CDC42, IL19 and IL1R1, did not show evidence of association in a single SNP analyses and corroborated the majority of these effects in two datasets. The haplotype analysis identified associations with HBV vaccine-induced immunity in several new genes
Interleukin 12B (IL12B) Genetic Variation and Pulmonary Tuberculosis: A Study of Cohorts from The Gambia, Guinea-Bissau, United States and Argentina
We examined whether polymorphisms in interleukin-12B (IL12B) associate with susceptibility to pulmonary tuberculosis (PTB) in two West African populations (from The Gambia and Guinea-Bissau) and in two independent populations from North and South America. Nine polymorphisms (seven SNPs, one insertion/deletion, one microsatellite) were analyzed in 321 PTB cases and 346 controls from Guinea-Bissau and 280 PTB cases and 286 controls from The Gambia. For replication we studied 281 case and 179 control African-American samples and 221 cases and 144 controls of European ancestry from the US and Argentina. First-stage single locus analyses revealed signals of association at IL12B 3′ UTR SNP rs3212227 (unadjusted allelic p = 0.04; additive genotypic p = 0.05, OR = 0.78, 95% CI [0.61–0.99]) in Guinea-Bissau and rs11574790 (unadjusted allelic p = 0.05; additive genotypic p = 0.05, OR = 0.76, 95% CI [0.58–1.00]) in The Gambia. Association of rs3212227 was then replicated in African-Americans (rs3212227 allelic p = 0.002; additive genotypic p = 0.05, OR = 0.78, 95% CI [0.61–1.00]); most importantly, in the African-American cohort, multiple significant signals of association (seven of the nine polymorphisms tested) were detected throughout the gene. These data suggest that genetic variation in IL12B, a highly relevant candidate gene, is a risk factor for PTB in populations of African ancestry, although further studies will be required to confirm this association and identify the precise mechanism underlying it
FTO gene variation and measures of body mass in an African population
BACKGROUND: Variation in the fat mass and obesity associated (FTO) gene has been reproducibly associated with body mass index (BMI) and obesity in populations of White European origin. Data from Asians and African-Americans is less conclusive. METHODS: We assessed the effect of 16 FTO polymorphisms on body mass in a large population of predominantly lean Gambians (N(max) 2208) participating in a long-term surveillance program providing contemporary and early-life anthropometric measurements. RESULTS: Sixteen FTO tagSNPs screened here, including several associated with BMI in Europeans, were not associated with birth weight (BWT), early weight gain in 1-2 year olds, BMI in adults (> or = 18 y), or weight-for-height (WFH) z-score across all ages. No association was seen between genotype and WFH z-score or other measures of body mass. The confidence limits indicate that the effect size for WFH z-score never exceeded 0.17 units per allele copy for any SNP (excluding the three SNPs with allele < 15%). with much the lowest allele frequency. The confidence interval of the effect size for rs9939609 did not overlap that reported previously in Europeans. CONCLUSION: To our knowledge this is the first study of FTO gene variation in a well-characterised African population. Our results suggest that FTO gene variation does not influence measures of body mass in Gambians living a traditional lifestyle, or has a smaller effect than that detected in Europeans. These findings are not directly comparable to results from previous studies in African-Americans due to differences in study design and analysis. It is also possible that any effect of FTO genotype on body mass is of limited relevance in a lean population where little excess food is available, compared to similar ethnic populations where food supply is plentiful
- …