4 research outputs found

    Detection of susceptible Norway spruce to bark beetle attack using PlanetScope multispectral imagery

    Get PDF
    Climate change-related acute or long-term drought stress can weaken forest ecosystems and result in widespread bark beetle infestations. Eurasian spruce bark beetle (Ips typographus L.) infestations have been occurring in Norway spruce [Picea abies (L.) Karst.]-dominated forests in central Europe including the Czechia. These infestations appear regularly, especially in homogeneous spruce stands, and the impact varies with the climate-induced water stress conditions. The removal of infected trees before the beetles leave the bark is an important step in forest pest management. Early identification of susceptible trees to infestations is also very important but quite challenging since stressed tree-tops show no sign of discolouration in the visible spectrum. We investigated if individual spectral bandwidths or developed spectral vegetation indices (SVIs), can be used to differentiate non-attacked trees, assumed to be healthy, from trees susceptible to attacks in the later stages of a growing season. And, how the temporal-scale patterns of individual bands and developed SVIs of susceptible trees to attacks, driven by changes in spectral characteristics of trees, behave differently than those patterns observed for healthy trees. The multispectral imagery from the PlanetScope satellite coupled with field data were used to statistically test the competency of the individual band and/or developed SVIs to differentiate two designated classes of healthy and susceptible trees. We found significant differences between SVIs of the susceptible and healthy spruce forests using the Enhanced Vegetation Index (EVI) and Visible Atmospherically Resistant Index (VARI). The accuracy for both indices ranged from 0.7 to 0.78; the highest among all examined indices. The results indicated that the spectral differences between the healthy and susceptible trees were present at the beginning of the growing season before the attacks. The existing spectral differences, likely caused by water-stress stimuli such as droughts, may be a key to detecting forests susceptible to early infestations. Our introduced methodology can also be applied in future research, using new generations of the PlanetScope imagery, to assess forests susceptibility to bark beetle infestations early in the growing season

    Comparing the Effects of Green and Blue Bodies and Urban Morphology on Land Surface Temperatures Close to Rivers and Large Lakes

    No full text
    Understanding the complex contributions of several factors to an urban heat island is crucial for assessing the impacts of planning on the thermal conditions within cities. It is relatively well-known how the different factors work separately, but how they work together, especially near water bodies, is still unclear. This paper investigates the effects of blue bodies (rivers or large lakes), the normalized difference vegetation index (NDVI), building coverage (BC), and building height (BH) on the land surface temperature (LST), comparing the situation around lakes and a river. Their inter-relationships are explored in a square grid of 30 × 30 m using Landsat-8 data on LST measurements in Prague, Czech Republic, in summer 2022. Multiple regression models are used for the analysis. The results imply that the NDVI significantly reduces LSTs, followed rivers if within 200 m of one, while the effect of lakes is negligible. The effect of BH is low. BC is a predominant factor in the city, generating a warming effect, which increases with the city’s compactness. The main planning implications are to base urban heat island mitigation strategies on compensating for building coverage with live and dense green bodies, promoting vertical development

    Sexual Dimorphism in the Response of Mercurialis annua to Stress

    No full text
    The research presented stemmed from the observations that female plants of the annual dioecious Mercurialis annua outlive male plants. This led to the hypothesis that female plants of M. annua would be more tolerant to stress than male plants. This hypothesis was addressed in a comprehensive way, by comparing morphological, biochemical and metabolomics changes in female and male plants during their development and under salinity. There were practically no differences between the genders in vegetative development and physiological parameters. However, under salinity conditions, female plants produced significantly more new reproductive nodes. Gender-linked differences in peroxidase (POD) and glutathione transferases (GSTs) were involved in anti-oxidation, detoxification and developmental processes in M. annua. 1H NMR metabolite profiling of female and male M. annua plants showed that under salinity the activity of the TCA cycle increased. There was also an increase in betaine in both genders, which may be explainable by its osmo-compatible function under salinity. The concentration of ten metabolites changed in both genders, while ‘Female-only-response’ to salinity was detected for five metabolites. In conclusion, dimorphic responses of M. annua plant genders to stress may be attributed to female plants’ capacity to survive and complete the reproductive life cycle
    corecore