36,073 research outputs found
Barnes Hospital Bulletin
https://digitalcommons.wustl.edu/bjc_barnes_bulletin/1251/thumbnail.jp
Separating the basic logics of the basic recurrences
This paper shows that, even at the most basic level, the parallel, countable
branching and uncountable branching recurrences of Computability Logic (see
http://www.cis.upenn.edu/~giorgi/cl.html) validate different principles
Build your own clarithmetic II: Soundness
Clarithmetics are number theories based on computability logic (see
http://www.csc.villanova.edu/~japaridz/CL/ ). Formulas of these theories
represent interactive computational problems, and their "truth" is understood
as existence of an algorithmic solution. Various complexity constraints on such
solutions induce various versions of clarithmetic. The present paper introduces
a parameterized/schematic version CLA11(P1,P2,P3,P4). By tuning the three
parameters P1,P2,P3 in an essentially mechanical manner, one automatically
obtains sound and complete theories with respect to a wide range of target
tricomplexity classes, i.e. combinations of time (set by P3), space (set by P2)
and so called amplitude (set by P1) complexities. Sound in the sense that every
theorem T of the system represents an interactive number-theoretic
computational problem with a solution from the given tricomplexity class and,
furthermore, such a solution can be automatically extracted from a proof of T.
And complete in the sense that every interactive number-theoretic problem with
a solution from the given tricomplexity class is represented by some theorem of
the system. Furthermore, through tuning the 4th parameter P4, at the cost of
sacrificing recursive axiomatizability but not simplicity or elegance, the
above extensional completeness can be strengthened to intensional completeness,
according to which every formula representing a problem with a solution from
the given tricomplexity class is a theorem of the system. This article is
published in two parts. The previous Part I has introduced the system and
proved its completeness, while the present Part II is devoted to proving
soundness
Ptarithmetic
The present article introduces ptarithmetic (short for "polynomial time
arithmetic") -- a formal number theory similar to the well known Peano
arithmetic, but based on the recently born computability logic (see
http://www.cis.upenn.edu/~giorgi/cl.html) instead of classical logic. The
formulas of ptarithmetic represent interactive computational problems rather
than just true/false statements, and their "truth" is understood as existence
of a polynomial time solution. The system of ptarithmetic elaborated in this
article is shown to be sound and complete. Sound in the sense that every
theorem T of the system represents an interactive number-theoretic
computational problem with a polynomial time solution and, furthermore, such a
solution can be effectively extracted from a proof of T. And complete in the
sense that every interactive number-theoretic problem with a polynomial time
solution is represented by some theorem T of the system.
The paper is self-contained, and can be read without any previous familiarity
with computability logic.Comment: Substantially better versions are on their way. Hence the present
article probably will not be publishe
A logical basis for constructive systems
The work is devoted to Computability Logic (CoL) -- the
philosophical/mathematical platform and long-term project for redeveloping
classical logic after replacing truth} by computability in its underlying
semantics (see http://www.cis.upenn.edu/~giorgi/cl.html). This article
elaborates some basic complexity theory for the CoL framework. Then it proves
soundness and completeness for the deductive system CL12 with respect to the
semantics of CoL, including the version of the latter based on polynomial time
computability instead of computability-in-principle. CL12 is a sequent calculus
system, where the meaning of a sequent intuitively can be characterized as "the
succedent is algorithmically reducible to the antecedent", and where formulas
are built from predicate letters, function letters, variables, constants,
identity, negation, parallel and choice connectives, and blind and choice
quantifiers. A case is made that CL12 is an adequate logical basis for
constructive applied theories, including complexity-oriented ones
- …