32 research outputs found

    Direct immersion solid-phase microextraction analysis of multi-class contaminants in edible seaweeds by gas chromatography-mass spectrometry

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.aca.2018.05.066 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/The present work aimed at the development of a simple and accurate direct immersion-solidphase microextraction-gas-chromatography-mass spectrometry (DI-SPME-GC-MS) method for simultaneous determination of PAHs, PCBs, and pesticide residues in edible seaweeds. As the target contaminants possess a wide range of physical-chemical properties, multivariate experimental design was used for method optimization. In particular, two different methods were optimized and validated: one that allows for simultaneous determination of all targets, and an ad hoc method for determination of hydrophobic analytes, a class that often poses a challenge for extraction from food matrices. Optimum conditions suitable for simultaneous quantitation of all targeted compounds, namely buffer at pH = 7.0, 20% acetone (v/v), 10% NaCl (w/w), 0.02% NaN3, 60 min DI extraction at 55 °C, and 20 min desorption at 270 °C, afforded limits of quantitation (LOQs) in the range of 1–30 μg kg−1, a wide linear range of 5–2000 μg kg−1, the attainment of satisfactory determination coefficients (R2˃0.99) with no significant lack of fit (p > 0.05) at the 5% level, and satisfactory accuracy and precision values. By modifying the extraction conditions to favor extraction of the most hydrophobic analytes (e.g. higher amount of organic modifier and pH, and lower salt content) lower LOQs were obtained for these compounds ranging from 0.2 to 13.3 μg kg−1. The established methods were then used for screening of commercial, edible dry seaweeds, with PCBs (≤16.0 ng g−1) and PAHs (≤15.5 ng g−1) detected in some samples. This method overcomes most challenges commonly encountered in dry sample analysis applications, and represents the first report of a DI-SPME method employing the matrix-compatible fiber for simultaneous multiclass and multiresidue analysis of seaweeds.Natural Sciences and Engineering Research Council of CanadaChina Sponsorship Council ["201606330026"]Fundação de Amparo à Pesquisa do Estado de São Paulo ["2016/16180–6"

    Development and validation of a fully automated solid phase microextraction high throughput method for quantitative analysis of multiresidue veterinary drugs in chicken tissue

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.aca.2018.12.044. © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper presents the development and validation of a fully automated, high-throughput multiclass, multiresidue method for quantitative analysis of 77 veterinary drugs in chicken muscle via direct immersion solid phase microextraction (DI-SPME) and ultra-high pressure liquid chromatography-electrospray ionization - tandem mass spectrometry (UHPLC-ESI-MS/MS). The selected drugs represent more than 12 different classes of drugs characterized by varying physical and chemical properties. A Hydrophilic–lipophilic balance (HLB)/polyacrylonitrile (PAN) extraction phase, prepared using HLB particles synthesized in-house, yielded the best extraction/desorption performance among four different SPME extraction phases evaluated in the current work. The developed SPME method was optimized in terms of SPME coating and geometry, desorption solvent, extraction and rinsing conditions, and extraction and desorption times. Multivariate analysis was performed to determine the optimal desorption solvent for the proposed application. The developed method was validated according to the Food and Drug Administration (FDA) guidelines, taking into account Canadian maximum residue limits (MRLs) and US maximum tolerance levels for veterinary drugs in meat. Method accuracy ranged from 80 to 120% for at least 73 compounds, with relative standard deviation of 1–15%. Inter-day precision ranged from 4 to 15% for 70 compounds. Determination coefficients values were higher than 0.991 for all compounds under study with no significant lack of fit (p > 0.05) at the 5% level. In terms of limits of quantitation, the method was able to meet both Canadian and US regulatory levels for all compounds under study.The authors would like to acknowledge Perkin Elmer for the financial support and the staff at the University of Waterloo's Science Technical Services for their exceptional technical support and collaboration to improve the SPME brush of the high-throughput system. V.A.J.thanks FAPESP, process 2016/16180e6 for his scholarship
    corecore