140 research outputs found

    The Galactic habitable zone around M and FGK stars with chemical evolution models with dust

    Full text link
    The Galactic habitable zone is defined as the region with highly enough metallicity to form planetary systems in which Earth-like planets could be born and might be capable of sustaining life surviving to the destructive effects of nearby supernova explosion events. Galactic chemical evolution models can be useful tools for studying the galactic habitable zones in different systems. Our aim here is to find the Galactic habitable zone using chemical evolution models for the Milky Way disc, adopting the most recent prescriptions for the evolution of dust and for the probability of finding planetary systems around M and FGK stars. Moreover, for the first time, we will express those probabilities in terms of the dust-to-gas ratio of the ISM in the solar neighborhood as computed by detailed chemical evolution models. At a fixed Galactic time and Galactocentric distance we determine the number of M and FGK stars having Earths (but no gas giant planets) which survived supernova explosions, using the formalism of our Paper I. The probabilities of finding terrestrial planets but not gas giant planets around M stars deviate substantially from the ones around FGK stars for supersolar values of [Fe/H]. For both FGK and M stars the maximum number of stars hosting habitable planets is at 8 kpc from the Galactic Centre, if destructive effects by supernova explosions are taken into account. At the present time the total number of M stars with habitable planets are ≃\simeq 10 times the number of FGK stars. Moreover, we provide a sixth order polynomial fit (and a linear one but more approximated) for the relation found with chemical evolution models in the solar neighborhood between the [Fe/H] abundances and the dust-to-gas ratio.Comment: Accepted for publication in A&A, 10 pages 6 figure

    The cosmic dust rate across the Universe

    Get PDF
    We investigate the evolution of interstellar dust in the Universe by means of chemical evolution models of galaxies of different morphological types, reproducing the main observed features of present-day galaxies. We adopt the most updated prescriptions for dust production from supernovae and asymptotic giant branch stars as well as for dust accretion and destruction processes. Then, we study the cosmic dust rate in the framework of three different cosmological scenarios for galaxy formation: (i) a pure luminosity scenario, (ii) a number density evolution scenario, as suggested by the classical hierarchical clustering scenario and (iii) an alternative scenario, in which both spirals and ellipticals are allowed to evolve in number on an observationally motivated basis. Our results give predictions about the evolution of the dust content in different galaxies as well as the cosmic dust rate as a function of redshift. Concerning the cosmic dust rate, the best scenario is the alternative one, which predicts a peak at 2 < z < 3 and reproduces the cosmic star formation rate. We compute the evolution of the comoving dust density parameter \u3a9dust and find agreement with data for z < 0.5 in the framework of DE and alternative scenarios. Finally, the evolution of the average cosmic metallicity is presented and it shows a quite fast increase in each scenario, reaching the solar value at the present time, although most of the heavy elements are incorporated into solid grains, and therefore not observable in the gas phase

    22-GHz Modulation Bandwidth of Long Cavity DBR Laser by Using a Weakly Laterally Coupled Grating Fabricated by Focused Ion Beam Lithography

    Get PDF
    A 22-GHz directly modulated 3-dB bandwidth could be obtained by 1.3-mm-long weakly laterally coupled distributed Bragg reflector lasers fabricated by focused ion beam lithography. In addition to a high bandwidth, the lasers show a stable emission spectrum with side-mode suppression ratios of more than 40 dB and output powers exceeding 20 mW

    Numerical Study of Optical Frequency Combs in mid-IR Quantum Cascade Lasers: Effective Semiconductor Maxwell-Bloch Equations

    Get PDF
    In this paper a theoretical model based on Effective Semiconductor Maxwell-Bloch Equations (ESMBEs) is proposed for the description of the dynamics of a multi-mode mid-Infrared (mid-IR) Quantum Cascade Laser (QCL) in Fabry Perot (FP) configuration, in order to investigate the spontaneous generation of frequency combs in this device. In agreement with recent experimental results our numerical simulations show both chaotic and regular multimode regimes. In the latter case we identify self-confined structures travelling along the cavity, and furthermore the instantaneous frequency is characterized by a linear chirp behaviour

    Dynamics and tolerance to external optical feedback of III-V/Si hybrid lasers with dispersive narrowband mirror

    Get PDF
    We report how external cavity III-V/Si hybrid lasers operate in regimes of ultra-damped relaxation oscillations or in unstable regimes as consequence to the dispersive mirror, non-zero linewidth enhancement factor and four-wave mixing in the gain medium. Tolerance to external optical feedback is also discussed

    A new galactic chemical evolution model with dust: Results for dwarf irregular galaxies and DLA systems

    Get PDF
    We present a galactic chemical evolution model which adopts updated prescriptions for all the main processes governing the dust cycle. We follow in detail the evolution of the abundances of several chemical species (C, O, S, Si, Fe and Zn) in the gas and dust of a typical dwarf irregular galaxy. The dwarf irregular galaxy is assumed to evolve with a low but continuous level of star formation and experience galactic winds triggered by supernova (SN) explosions. We predict the evolution of the gas to dust ratio in such a galaxy and discuss critically the main processes involving dust, such as dust production by asymptotic giant branch stars and Type II SNe, destruction and accretion (gas condensation in clouds). We then apply our model to damped Lyman \u3b1 (DLA) systems which are believed to be dwarf irregulars, as witnessed by their abundance patterns. Our main conclusions are the following. (i) We can reproduce the observed gas to dust ratio in dwarf galaxies. (ii) We find that the process of dust accretion plays a fundamental role in the evolution of dust and in certain cases it becomes the dominant process in the dust cycle. On the other hand, dust destruction seems to be a negligible process in irregulars. (iii) Concerning DLA systems, we show that the observed gas-phase abundances of silicon, normalized to volatile elements (zinc and sulfur), are in agreement with our model. (iv) The abundances of iron and silicon in DLA systems suggest that the two elements undergo a different history of dust formation and evolution. Our work casts light on the nature of iron-rich dust: the observed depletion pattern of iron is well reproduced only when an additional source of iron dust is considered. Here we explore the possibility of a contribution from Type Ia SNe as well as an efficient accretion of iron nanoparticles

    Ground-state power quenching in two-state lasing quantum dot lasers

    Get PDF
    The paper analyses theoretically the quenching of the ground state (GS) power observed in InAs/GaAs quantum dot lasers when emitting simultaneously from both ground state and excited state. The model, based on a set of rate equations for the electrons, holes, and photons, shows that the power quenching is caused by the different time scales of the electron and hole intra-level dynamic, as well as by the long transport time of the holes in the GaAs barrier. The results presented also evidence how the very different dynamics of electrons and holes have other important consequences on the laser behavior; we show for example that the electron and hole carrier densities of the states resonant with lasing modes are never clamped at the threshold value, and that the damping of relaxation oscillations is strongly influenced by the hole dynamics

    CW Emission and Self-Pulsing in a III-V/SiN Hybrid Laser With Narrow Band Mirror

    Get PDF
    We report on how external cavity III-V/SiN hybrid lasers operate in regimes of ultra-damped relaxation oscillations or in CW unstable dynamical regimes (self-pulsing or approaching turbulence) as a consequence of mirror dispersion, non-zero linewidth enhancement factor, and four-wave mixing in the gain medium. The impact of the dispersive mirror bandwidth and different mirror effective lengths on the laser tolerance to external optical feedback is also discussed

    Dynamic regimes and damping of relaxation oscillations in III-V/Si external cavity lasers

    Get PDF
    We report how external cavity IIIV/Si hybrid lasers operate in regimes of ultradamped relaxation oscillations or in turbulent and selfpulsing regimes. The different regimes are reached by detuning the lasing wavelength respect to the mirror effective reflectivity peak and are the consequence of the dispersive narrow band reflectivity of the silicon photonics mirror, the linewidth enhancement factor and fourwave mixing in the gain medium

    Broadband light sources based on InAs/InGaAs metamorphic quantum dots

    Get PDF
    We propose a design for a semiconductor structure emitting broadband light in the infrared, based on InAsquantum dots(QDs) embedded into a metamorphic step-graded InxGa1−xAs buffer. We developed a model to calculate the metamorphic QD energy levels based on the realistic QD parameters and on the strain-dependent material properties; we validated the results of simulations by comparison with the experimental values. On this basis, we designed a p-i-n heterostructure with a graded index profile toward the realization of an electrically pumped guided wave device. This has been done by adding layers where QDs are embedded in InxAlyGa1−x−yAs layers, to obtain a symmetric structure from a band profile point of view. To assess the room temperature electro-luminescenceemission spectrum under realistic electrical injection conditions, we performed device-level simulations based on a coupled drift-diffusion and QD rate equation model. On the basis of the device simulation results, we conclude that the present proposal is a viable option to realize broadband light-emitting devices
    • …
    corecore