8 research outputs found

    Extending the phenotype of BMPER-related skeletal dysplasias to ischiospinal dysostosis

    Get PDF
    Ischiospinal dysostosis (ISD) is a polytopic dysostosis characterized by ischial hypoplasia, multiple segmental anomalies of the cervicothoracic spine, hypoplasia of the lumbrosacral spine and occasionally associated with nephroblastomatosis. ISD is similar to, but milder than the lethal/semilethal condition termed diaphanospondylodysostosis (DSD), which is associated with homozygous or compound heterozygous mutations of bone morphogenetic protein-binding endothelial regulator protein (BMPER) gene. Here we report for the first time biallelic BMPER mutations in two patients with ISD, neither of whom had renal abnormalities. Our data supports and further extends the phenotypic variability of BMPER-related skeletal disorders.Funding Agencies|Stockholm County Council; Karolinska Institutet; Kronprinsessan Lovisas; Axel Tiellmans Minnesfond Foundation; Samariten Foundation; Sallskapet Barnavard Foundation; Promobilia Foundations; Genome Technology to Business Translation Program of the National Research Foundation (NRF) - Ministry of Science, ICT &amp; Future Planning of the government of Republic of Korea [NRF-2014M3C9A2064684]</p

    Extending the phenotype of BMPER-related skeletal dysplasias to ischiospinal dysostosis

    No full text
    Ischiospinal dysostosis (ISD) is a polytopic dysostosis characterized by ischial hypoplasia, multiple segmental anomalies of the cervicothoracic spine, hypoplasia of the lumbrosacral spine and occasionally associated with nephroblastomatosis. ISD is similar to, but milder than the lethal/semilethal condition termed diaphanospondylodysostosis (DSD), which is associated with homozygous or compound heterozygous mutations of bone morphogenetic protein-binding endothelial regulator protein (BMPER) gene. Here we report for the first time biallelic BMPER mutations in two patients with ISD, neither of whom had renal abnormalities. Our data supports and further extends the phenotypic variability of BMPER-related skeletal disorders.Funding Agencies|Stockholm County Council; Karolinska Institutet; Kronprinsessan Lovisas; Axel Tiellmans Minnesfond Foundation; Samariten Foundation; Sallskapet Barnavard Foundation; Promobilia Foundations; Genome Technology to Business Translation Program of the National Research Foundation (NRF) - Ministry of Science, ICT &amp; Future Planning of the government of Republic of Korea [NRF-2014M3C9A2064684]</p

    Analysis of copy number variation in the normal human population within a region containing complex segmental duplications on 22q11 using high-resolution array-CGH

    Get PDF
    A previously detected copy number polymorphism (Ep CNP) in patients affected with neuroectodermal tumors led us to investigate its frequency and length in the normal population. For this purpose, a program called Sequence Allocator was developed and applied for the construction of an array that consisted of unique and duplicated fragments, allowing the assessment of copy number variation within regions of segmental duplications. The average resolution of this array was I I kb and we determined the size of the Ep CNP to be 290 kb. Analysis of normal controls identified 7.7 and 7.1% gains in peripheral blood and lymphoblastoid cell line (LCL) DNA, respectively, while deletions were found only in the LCL group (7.1%). This array platform allows the detection of DNA copy number variation within regions of pronounced genomic complexity, which constitutes an improvement over available technologies. (c) 2006 Elsevier Inc. All rights reserved

    Microarray-based survey of CpG islands identifies concurrent hyper- and hypomethylation patterns in tissues derived from patients with breast cancer

    No full text
    Maintenance of CpG island methylation in the genome is crucial for cellular homeostasis and this balance is disrupted in cancer. Our rationale was to compare the methylation of CpG islands in tissues (tumor, healthy breast and blood) from patients with breast cancer. We studied 72 genes in 103 samples using microarray hybridization and bisulfite sequencing. We observed tumor specific hyper- or hypomethylation of five genes; COL9A1, MT1A, MT1J, HOXA5 and FLJ45983. A general drop of methylation in COL9A1 was apparent in tumors, when compared with blood and healthy breast tissue. Furthermore, one tumor displayed a complete loss of methylation of all five genes, suggesting overall impairment of methylation. The downstream, evolutionary conserved island of HOXA5 showed hypomethylation in 18 tumors and complete methylation in others. This CpG island also displayed a semimethylated state in the majority of normal breast samples, when compared to complete methylation in blood. Distinct methylation patterns were further seen in MT1J and MT1A, belonging to the metallothionein gene family. The CpG islands of these genes are spaced by 2 kb, which shows selective methylation of two structurally and functionally related genes. The promoters of FLJ45983 and MT1A were methylated above 25% in 18 primary and metastatic tumors. Concurrently, there was also >10% methylation of healthy breast tissue in 11 and 5 samples, respectively. This suggests that the methylation process for the latter two genes takes place already in normal breast cells. Our results also point to a considerable heterogeneity of epigenetic disturbance in breast cancer. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat

    A novel phenotype in N-glycosylation disorders: Gillessen-Kaesbach-Nishimura skeletal dysplasia due to pathogenic variants in ALG9.

    No full text
    A rare lethal autosomal recessive syndrome with skeletal dysplasia, polycystic kidneys and multiple malformations was first described by Gillessen-Kaesbach et al and subsequently by Nishimura et al. The skeletal features uniformly comprise a round pelvis, mesomelic shortening of the upper limbs and defective ossification of the cervical spine. We studied two unrelated families including three affected fetuses with Gillessen-Kaesbach-Nishimura syndrome using whole-exome and Sanger sequencing, comparative genome hybridization and homozygosity mapping. All affected patients were shown to have a novel homozygous splice variant NM_024740.2: c.1173+2T>A in the ALG9 gene, encoding alpha-1,2-mannosyltransferase, involved in the formation of the lipid-linked oligosaccharide precursor of N-glycosylation. RNA analysis demonstrated skipping of exon 10, leading to shorter RNA. Mass spectrometric analysis showed an increase in monoglycosylated transferrin as compared with control tissues, confirming that this is a congenital disorder of glycosylation (CDG). Only three liveborn children with ALG9-CDG have been previously reported, all with missense variants. All three suffered from intellectual disability, muscular hypotonia, microcephaly and renal cysts, but none had skeletal dysplasia. Our study shows that some pathogenic variants in ALG9 can present as a lethal skeletal dysplasia with visceral malformations as the most severe phenotype. The skeletal features overlap with that previously reported for ALG3- and ALG12-CDG, suggesting that this subset of glycosylation disorders constitutes a new diagnostic group of skeletal dysplasias.European Journal of Human Genetics advance online publication, 13 May 2015; doi:10.1038/ejhg.2015.91
    corecore