100 research outputs found
Emergency Mosquito Control on a Selected Area in Eastern North Carolina After Hurricane Irene
Natural disasters such as hurricanes may contribute to mosquito abundance and, consequently, arbovirus transmission risk. In 2011, flooding from Hurricane Irene in eastern North Carolina (NC) resulted in increased mosquito populations that hindered recovery efforts. Budget shortfalls in NC have reduced the functionality of long-term mosquito surveillance and control programs; hence, many counties rely on the Federal Emergency Management Agency for post-disaster mosquito control. This pilot study examines mosquito abundance pre- and post-aerial insecticide spraying at eight study sites in Washington and Tyrrell Counties in rural eastern NC after Hurricane Irene. Percent change was calculated and compared for traps in areas that received aerial pesticide application and those that did not. Traps in spray zones show decreases in mosquito abundance when compared to control traps (treatment: −52.93%; control: 3.55%), although no significant differences (P = 0.286) were found in mosquito abundance between groups. Implications of reactive rather than proactive mosquito control responses are discussed
Dual role of cerebral blood flow in regional brain temperature control in the healthy newborn infant.
Small shifts in brain temperature after hypoxia-ischaemia affect cell viability. The main determinants of brain temperature are cerebral metabolism, which contributes to local heat production, and brain perfusion, which removes heat. However, few studies have addressed the effect of cerebral metabolism and perfusion on regional brain temperature in human neonates because of the lack of non-invasive cot-side monitors. This study aimed (i) to determine non-invasive monitoring tools of cerebral metabolism and perfusion by combining near-infrared spectroscopy and echocardiography, and (ii) to investigate the dependence of brain temperature on cerebral metabolism and perfusion in unsedated newborn infants. Thirty-two healthy newborn infants were recruited. They were studied with cerebral near-infrared spectroscopy, echocardiography, and a zero-heat flux tissue thermometer. A surrogate of cerebral blood flow (CBF) was measured using superior vena cava flow adjusted for cerebral volume (rSVC flow). The tissue oxygenation index, fractional oxygen extraction (FOE), and the cerebral metabolic rate of oxygen relative to rSVC flow (CMRO2 index) were also estimated. A greater rSVC flow was positively associated with higher brain temperatures, particularly for superficial structures. The CMRO2 index and rSVC flow were positively coupled. However, brain temperature was independent of FOE and the CMRO2 index. A cooler ambient temperature was associated with a greater temperature gradient between the scalp surface and the body core. Cerebral oxygen metabolism and perfusion were monitored in newborn infants without using tracers. In these healthy newborn infants, cerebral perfusion and ambient temperature were significant independent variables of brain temperature. CBF has primarily been associated with heat removal from the brain. However, our results suggest that CBF is likely to deliver heat specifically to the superficial brain. Further studies are required to assess the effect of cerebral metabolism and perfusion on regional brain temperature in low-cardiac output conditions, fever, and with therapeutic hypothermia
Immunoblot analysis of platelet glyeoprotein IIb in patients with Glanzmann thrombasthenia in Israel
- …