5 research outputs found

    METTL3 regulates WTAP protein homeostasis

    Get PDF
    The Wilms tumor 1 (WT1)-associated protein (WTAP) is upregulated in many tumors, including, acute myeloid leukemia (AML), where it plays an oncogenic role by interacting with different proteins involved in RNA processing and cell proliferation. In addition, WTAP is also a regulator of the nuclear complex required for the deposition of N6-methyladenosine (m6A) into mRNAs, containing the METTL3 methyltransferase. However, it is not clear if WTAP may have m6A-independent regulatory functions that might contribute to its oncogenic role. Here, we show that both knockdown and overexpression of METTL3 protein results in WTAP protein upregulation, indicating that METTL3 levels are critical for WTAP protein homeostasis. However, we show that WTAP upregulation is not sufficient to promote cell proliferation in the absence of a functional METTL3. Therein, these data indicate that the reported oncogenic function of WTAP is strictly connected to a functional m6A methylation complex

    ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism

    Get PDF
    Background: N6-methyladenosine (m6A) and adenosine-to-inosine (A-to-I) RNA editing are two of the most abundant RNA modification events affecting adenosines in mammals. Both these RNA modifications determine mRNA fate and play a pivotal role in tumor development and progression. Results: Here, we show that METTL3, upregulated in glioblastoma, methylates ADAR1 mRNA and increases its protein level leading to a pro-tumorigenic mechanism connecting METTL3, YTHDF1, and ADAR1. We show that ADAR1 plays a cancer-promoting role independently of its deaminase activity by binding CDK2 mRNA, underlining the importance of ADARs as essential RNA-binding proteins for cell homeostasis as well as cancer progression. Additionally, we show that ADAR1 knockdown is sufficient to strongly inhibit glioblastoma growth in vivo. Conclusions: Hence, our findings underscore METTL3/ADAR1 axis as a novel crucial pathway in cancer progression that connects m6A and A-to-I editing post-transcriptional events

    The METTL3/METTL14 m6A methylation complex plays a crucial role in Chronic Myeloid Leukemia survival by regulating MYC expression.

    No full text
    Chronic Myeloid Leukemia (CML) is a malignant myeloproliferative disease caused by a chromosomal translocation that produces the constitutively activated tyrosine kinase BCR-ABL1 fusion protein. Tyrosine kinase inhibitors (TKIs) are the first-choice treatment. However, resistance to TKIs remains a challenge for curing CML patients. To gain insight into the role of m6A modification in CML, we analyze the role of the METTL3/METTL14 m6A writing complex in the BCR-ABL1+ K562 CML cellular model. We show that knockdown of METTL3 and METTL14 strongly impaired proliferation of both TKI-sensitive and TKI-resistant cells. Furthermore, we demonstrate that MYC oncogenes is highly m6A methylated in CML and that m6A marks are required for its efficient expression. Therefore, our findings demonstrate an important role for m6A methylation in CML and show that targeting the METTL3/METTL14 complex may represent a promising therapeutic strategy for TKIs resistant CML cells

    New insight into the catalytic -dependent and -independent roles of METTL3 in sustaining aberrant translation in chronic myeloid leukemia

    No full text
    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by the presence of tyrosine kinase BCR-ABL1 fusion protein, which deregulate transcription and mRNA translation. Tyrosine kinase inhibitors (TKIs) are the first-choice treatment. However, resistance to TKIs remains a challenge to cure CML patients. Here, we reveal that the m(6)A methyltransferase complex METTL3/METTL14 is upregulated in CML patients and that is required for proliferation of primary CML cells and CML cell lines sensitive and resistant to the TKI imatinib. We demonstrate that depletion of METTL3 strongly impairs global translation efficiency. In particular, our data show that METTL3 is crucial for the expression of genes involved in ribosome biogenesis and translation. Specifically, we found that METTL3 directly regulates the level of PES1 protein identified as an oncogene in several tumors. We propose a model in which nuclear METTL3/METTL14 methyltransferase complex modified nascent transcripts whose translation is enhanced by cytoplasmic localization of METTL3, independently from its catalytic activity. In conclusion, our results point to METTL3 as a novel relevant oncogene in CML and as a promising therapeutic target for TKI resistant CML
    corecore