16 research outputs found
A Fractional Order-Kepler Optimization Algorithm (FO-KOA) for single and double-diode parameters PV cell extraction
The primary objective of this study is to investigate the effects of the Fractional Order Kepler Optimization Algorithm (FO-KOA) on photovoltaic (PV) module feature identification in solar systems. Leveraging the strengths of the original KOA, FO-KOA introduces fractional order elements and a Local Escaping Approach (LEA) to enhance search efficiency and prevent premature convergence. The FO element provides effective information and past expertise sharing amongst the participants to avoid premature converging. Additionally, LEA is incorporated to boost the search procedure by evading local optimization. The single-diode-model (SDM) and Double-diode-model (DDM) are two different equivalent circuits that are used for obtaining the unidentified parameters of the PV. Applied to KC-200, Ultra-Power-85, and SP-70 PV modules, FO-KOA is compared to the original KOA technique and contemporary algorithms. Simulation results demonstrate FO-KOA's remarkable average improvement rates, showcasing its significant advantages and robustness over earlier reported methods. The proposed FO-KOA demonstrates exceptional performance, outperforming existing algorithms by 94.42 %–99.73 % in optimizing PV cell parameter extraction, particularly for the KC200GT module, showcasing consistent superiority and robustness. Also, the proposed FO-KOA is validated of on SDM and DDM for the well-known RTC France PV cell
A Honey Badger Optimization for Minimizing the Pollutant Environmental Emissions-Based Economic Dispatch Model Integrating Combined Heat and Power Units
Traditionally, the Economic Dispatch Model (EDM) integrating Combined Heat and Power (CHP) units aims to reduce fuel costs by managing power-only, CHP, and heat-only units. Today, reducing pollutant emissions to the environment is of paramount concern. This research presents a novel honey badger optimization algorithm (HBOA) for EDM-integrated CHP units. HBOA is a novel meta-heuristic search strategy inspired by the honey badger’s sophisticated hunting behavior. In HBOA, the dynamic searching activity of the honey badger, which includes digging and honing, is separated into exploration and exploitation phases. In addition, several modern meta-heuristic optimization algorithms are employed, which are the African Vultures Algorithm (AVO), Dwarf Mongoose Optimization Algorithm (DMOA), Coot Optimization Algorithm (COA), and Beluga Whale Optimization Algorithm (BWOA). These algorithms are applied in a comparative manner considering the seven-unit test system. Various loading levels are considered with different power and heat loading. Four cases are investigated for each loading level, which differ based on the objective task and the consideration of power losses. Moreover, considering the pollutant emissions minimization objective, the proposed HBOA achieves reductions, without loss considerations, of 75.32%, 26.053%, and 87.233% for the three loading levels, respectively, compared to the initial case. Moreover, considering minimizing pollutant emissions, the suggested HBOA achieves decreases of 75.32%, 26.053%, and 87.233%, relative to the baseline scenario, for the three loading levels, respectively. Similarly, it performs reductions of 73.841%, 26.155%, and 92.595%, respectively, for the three loading levels compared to the baseline situation when power losses are considered. Consequently, the recommended HBOA surpasses the AVO, DMOA, COA, and BWOA when the purpose is to minimize fuel expenditures. In addition, the proposed HBOA significantly reduces pollutant emissions compared to the baseline scenario
Electrical parameters extraction of PV modules using artificial hummingbird optimizer
Abstract The parameter extraction of PV models is a nonlinear and multi-model optimization problem. However, it is essential to correctly estimate the parameters of the PV units due to their impact on the PV system efficiency in terms of power and current production. As a result, this study introduces a developed Artificial Hummingbird Technique (AHT) to generate the best values of the ungiven parameters of these PV units. The AHT mimics hummingbirds' unique flying abilities and foraging methods in the wild. The AHT is compared with numerous recent inspired techniques which are tuna swarm optimizer, African vulture’s optimizer, teaching learning studying-based optimizer and other recent optimization techniques. The statistical studies and experimental findings show that AHT outperforms other methods in extracting the parameters of various PV models of STM6-40/36, KC200GT and PWP 201 polycrystalline. The AHT’s performance is evaluated using the datasheet provided by the manufacturer. To highlight the AHT dominance, its performance is compared to those of other competing techniques. The simulation outcomes demonstrate that the AHT algorithm features a quick processing time and steadily convergence in consort with keeping an elevated level of accuracy in the offered solution
Proportional-Integral-Derivative Controller Based-Artificial Rabbits Algorithm for Load Frequency Control in Multi-Area Power Systems
A major problem in power systems is achieving a match between the load demand and generation demand, where security, dependability, and quality are critical factors that need to be provided to power producers. This paper proposes a proportional–integral–derivative (PID) controller that is optimally designed using a novel artificial rabbits algorithm (ARA) for load frequency control (LFC) in multi-area power systems (MAPSs) of two-area non-reheat thermal systems. The PID controller incorporates a filter with such a derivative coefficient to reduce the effects of the accompanied noise. In this regard, single objective function is assessed based on time-domain simulation to minimize the integral time-multiplied absolute error (ITAE). The proposed ARA adjusts the PID settings to their best potential considering three dissimilar test cases with different sets of disturbances, and the results from the designed PID controller based on the ARA are compared with various published techniques, including particle swarm optimization (PSO), differential evolution (DE), JAYA optimizer, and self-adaptive multi-population elitist (SAMPE) JAYA. The comparisons show that the PID controller’s design, which is based on the ARA, handles the load frequency regulation in MAPSs for the ITAE minimizations with significant effectiveness and success where the statistical analysis confirms its superiority. Considering the load change in area 1, the proposed ARA can acquire significant percentage improvements in the ITAE values of 1.949%, 3.455%, 2.077% and 1.949%, respectively, with regard to PSO, DE, JAYA and SAMPE-JAYA. Considering the load change in area 2, the proposed ARA can acquire significant percentage improvements in the ITAE values of 7.587%, 8.038%, 3.322% and 2.066%, respectively, with regard to PSO, DE, JAYA and SAMPE-JAYA. Considering simultaneous load changes in areas 1 and 2, the proposed ARA can acquire significant improvements in the ITAE values of 60.89%, 38.13%, 55.29% and 17.97%, respectively, with regard to PSO, DE, JAYA and SAMPE-JAYA
Nonlinear Dynamic Model for Parameter Estimation of Li-Ion Batteries Using Supply–Demand Algorithm
The parameter extraction of parameters for Li-ion batteries is regarded as a critical topic for assessing the performance of battery energy storage systems (BESSs). The supply–demand algorithm (SDA) is used in this work to identify a storage system’s unknown parameters. The parameter-extracting procedure is represented as a nonlinear optimization task in which the state of charge (SOC) is approximated using nonlinear features related to the battery current and the initial SOC condition. Furthermore, the open-circuit voltage is approximated using the resulting SOC, which is performed in a nonlinear formula, as well. When used in the dynamic nonlinear BESS model, the SDA was used to verify the fitness values and standard deviation error. Furthermore, the results that were acquired using SDA are compared to recently developed approaches, which are the gradient-based, tuna swarm, jellyfish, heap-based, and forensic-based optimizers. Simulated studies were paired with experiments for the 40 Ah Kokam Li-ion battery and the ARTEMIS driving-cycle pattern. The numerical outcomes showed that the proposed SDA is an approach which is excellent at identifying the parameters. Furthermore, when compared to the other current optimization techniques, for both the Kokam Li-ion batteries and the ARTEMIS drive-cycle pattern, the suggested SDA exhibited substantial precision
Enhanced Kepler Optimization Method for Nonlinear Multi-Dimensional Optimal Power Flow
Multi-Dimensional Optimal Power Flow (MDOPF) is a fundamental task in power systems engineering aimed at optimizing the operation of electrical networks while considering various constraints such as power generation, transmission, and distribution. The mathematical model of MDOPF involves formulating it as a non-linear, non-convex optimization problem aimed at minimizing specific objective functions while adhering to equality and inequality constraints. The objective function typically includes terms representing the Fuel Cost (FC), Entire Network Losses (ENL), and Entire Emissions (EE), while the constraints encompass power balance equations, generator operating limits, and network constraints, such as line flow limits and voltage limits. This paper presents an innovative Improved Kepler Optimization Technique (IKOT) for solving MDOPF problems. The IKOT builds upon the traditional KOT and incorporates enhanced local escaping mechanisms to overcome local optima traps and improve convergence speed. The mathematical model of the IKOT algorithm involves defining a population of candidate solutions (individuals) represented as vectors in a high-dimensional search space. Each individual corresponds to a potential solution to the MDOPF problem, and the algorithm iteratively refines these solutions to converge towards the optimal solution. The key innovation of the IKOT lies in its enhanced local escaping mechanisms, which enable it to explore the search space more effectively and avoid premature convergence to suboptimal solutions. Experimental results on standard IEEE test systems demonstrate the effectiveness of the proposed IKOT in solving MDOPF problems. The proposed IKOT obtained the FC, EE, and ENL of USD 41,666.963/h, 1.039 Ton/h, and 9.087 MW, respectively, in comparison with the KOT, which achieved USD 41,677.349/h, 1.048 Ton/h, 11.277 MW, respectively. In comparison to the base scenario, the IKOT achieved a reduction percentage of 18.85%, 58.89%, and 64.13%, respectively, for the three scenarios. The IKOT consistently outperformed the original KOT and other state-of-the-art metaheuristic optimization algorithms in terms of solution quality, convergence speed, and robustness
Nonlinear Dynamic Model for Parameter Estimation of Li-Ion Batteries Using Supply–Demand Algorithm
The parameter extraction of parameters for Li-ion batteries is regarded as a critical topic for assessing the performance of battery energy storage systems (BESSs). The supply–demand algorithm (SDA) is used in this work to identify a storage system’s unknown parameters. The parameter-extracting procedure is represented as a nonlinear optimization task in which the state of charge (SOC) is approximated using nonlinear features related to the battery current and the initial SOC condition. Furthermore, the open-circuit voltage is approximated using the resulting SOC, which is performed in a nonlinear formula, as well. When used in the dynamic nonlinear BESS model, the SDA was used to verify the fitness values and standard deviation error. Furthermore, the results that were acquired using SDA are compared to recently developed approaches, which are the gradient-based, tuna swarm, jellyfish, heap-based, and forensic-based optimizers. Simulated studies were paired with experiments for the 40 Ah Kokam Li-ion battery and the ARTEMIS driving-cycle pattern. The numerical outcomes showed that the proposed SDA is an approach which is excellent at identifying the parameters. Furthermore, when compared to the other current optimization techniques, for both the Kokam Li-ion batteries and the ARTEMIS drive-cycle pattern, the suggested SDA exhibited substantial precision
An Improved Artificial Ecosystem Algorithm for Economic Dispatch with Combined Heat and Power Units
The most effective use of numerous Combined Heat and Power Units (CHPUs) is a challenging issue that requires strong approaches to handle the Economic Dispatch (ED) with CHPUs. It aims at minimizing the fuel costs by managing the Power-Only Units (POUs), CHPUs, and Heat-Only Units (HOUs). The transmission losses are also integrated, which increases the non-convexity of the ED problem. This paper proposes a Modified Artificial Ecosystem Algorithm (MAEA) motivated by three energy transfer processes in an ecosystem: production, consumption, and decomposition. The MAEA incorporates a Fitness Distance Balance Model (FDBM) with the basic AEA to improve the quality of the solution in non-linear and multivariate optimization environments. The FDBM is a selection approach meant to find individuals which will provide the most to the searching pathways within a population as part of a reliable and productive approach. Consequently, the diversity and intensification processes are carried out in a balanced manner. The basic AEA and the proposed MAEA are performed, in a comparative manner considering the 7-unit and 48-unit test systems. According to numerical data, the proposed MAEA shows a robustness improvement of 97.31% and 96.63% for the 7-unit system and 46.03% and 60.57% for the 48-unit system, with and without the power losses, respectively. On the side of convergence, based on the average statistics, the proposed MAEA shows a considerable improvement of 47% and 43% of the total number of iterations for the 7-unit system and 13% and 20% of the total number of iterations for the 48-unit system, with and without the power losses, respectively. Thus, the suggested MAEA provides significant improvements in the robustness and convergence properties. The proposed MAEA also provides superior performance compared with different reported results, which indicates a promising solution methodology based on the proposed MAEA
An Improved Artificial Ecosystem Algorithm for Economic Dispatch with Combined Heat and Power Units
The most effective use of numerous Combined Heat and Power Units (CHPUs) is a challenging issue that requires strong approaches to handle the Economic Dispatch (ED) with CHPUs. It aims at minimizing the fuel costs by managing the Power-Only Units (POUs), CHPUs, and Heat-Only Units (HOUs). The transmission losses are also integrated, which increases the non-convexity of the ED problem. This paper proposes a Modified Artificial Ecosystem Algorithm (MAEA) motivated by three energy transfer processes in an ecosystem: production, consumption, and decomposition. The MAEA incorporates a Fitness Distance Balance Model (FDBM) with the basic AEA to improve the quality of the solution in non-linear and multivariate optimization environments. The FDBM is a selection approach meant to find individuals which will provide the most to the searching pathways within a population as part of a reliable and productive approach. Consequently, the diversity and intensification processes are carried out in a balanced manner. The basic AEA and the proposed MAEA are performed, in a comparative manner considering the 7-unit and 48-unit test systems. According to numerical data, the proposed MAEA shows a robustness improvement of 97.31% and 96.63% for the 7-unit system and 46.03% and 60.57% for the 48-unit system, with and without the power losses, respectively. On the side of convergence, based on the average statistics, the proposed MAEA shows a considerable improvement of 47% and 43% of the total number of iterations for the 7-unit system and 13% and 20% of the total number of iterations for the 48-unit system, with and without the power losses, respectively. Thus, the suggested MAEA provides significant improvements in the robustness and convergence properties. The proposed MAEA also provides superior performance compared with different reported results, which indicates a promising solution methodology based on the proposed MAEA
Enhanced power grid performance through Gorilla Troops Algorithm-guided thyristor controlled series capacitors allocation
This article introduces an innovative application of the Enhanced Gorilla Troops Algorithm (EGTA) in addressing engineering challenges related to the allocation of Thyristor Controlled Series Capacitors (TCSC) in power grids. Drawing inspiration from gorilla group behaviors, EGTA incorporates various methods, such as relocation to new areas, movement towards other gorillas, migration to specific locations, following the silverback, and engaging in competitive interactions for adult females. Enhancements to EGTA involve support for the exploitation and the exploration, respectively, through two additional strategies of periodic Tangent Flight Operator (TFO), and Fitness-based Crossover Strategy (FCS). The paper initially evaluates the effectiveness of EGTA by comparing it to the original GTA using numerical CEC 2017 single-objective benchmarks. Additionally, various recent optimizers are scrutinized. Subsequently, the suitability of the proposed EGTA for the allocation of TCSC apparatuses in transmission power systems is assessed through simulations on two IEEE power grids of 30 and 57 buses, employing various TCSC apparatus quantities. A comprehensive comparison is conducted between EGTA, GTA, and several other prevalent techniques in the literature for all applications. According to the average attained losses, the presented EGTA displays notable reductions in power losses for both the first and second systems when compared to the original GTA. Specifically, for the first system, the proposed EGTA achieves reductions of 1.659Â %, 2.545Â %, and 4.6Â % when optimizing one, two, and three TCSC apparatuses, respectively. Similarly, in the second system, the suggested EGTA achieves reductions of 6.096Â %, 7.107Â %, and 4.62Â %, respectively, when compared to the original GTA's findings considering one, two, and three TCSC apparatuses. The findings underscore the superior effectiveness and efficiency of the proposed EGTA over both the original GTA and several other contemporary systems