1,248 research outputs found
Magnetic charge and ordering in kagome spin ice
We present a numerical study of magnetic ordering in spin ice on kagome, a
two-dimensional lattice of corner-sharing triangles. The magnet has six ground
states and the ordering occurs in two stages, as one might expect for a
six-state clock model. In spin ice with short-range interactions up to second
neighbors, there is an intermediate critical phase separated from the
paramagnetic and ordered phases by Kosterlitz-Thouless transitions. In dipolar
spin ice, the intermediate phase has long-range order of staggered magnetic
charges. The high and low-temperature phase transitions are of the Ising and
3-state Potts universality classes, respectively. Freeze-out of defects in the
charge order produces a very large spin correlation length in the intermediate
phase. As a result of that, the lower-temperature transition appears to be of
the Kosterlitz-Thouless type.Comment: 20 pages, 12 figures, accepted version with minor change
Magnetic and Thermodynamic Properties of the Collective Paramagnet-Spin Liquid Pyrochlore Tb2Ti2O7
In a recent letter [Phys. Rev. Lett. {\bf 82}, 1012 (1999)] it was found that
the Tb magnetic moments in the TbTiO pyrochlore lattice of
corner-sharing tetrahedra remain in a {\it collective paramagnetic} state down
to 70mK. In this paper we present results from d.c. magnetic susceptibility,
specific heat data, inelastic neutron scattering measurements, and crystal
field calculations that strongly suggest that (1) the Tb ions in
TbTiO possess a moment of approximatively 5, and (2)
the ground state tensor is extremely anisotropic below a temperature of
K, with Ising-like Tb magnetic moments confined to point along
a local cubic direction
dramatically reduces the frustration otherwise present in a Heisenberg
pyrochlore antiferromagnet. The results presented herein underpin the
conceptual difficulty in understanding the microscopic mechanism(s) responsible
for TbTiO failing to develop long-range order at a temperature of
the order of the paramagnetic Curie-Weiss temperature K. We suggest that dipolar interactions and extra perturbative exchange
coupling(s)beyond nearest-neighbors may be responsible for the lack of ordering
of TbTiO.Comment: 8 POSTSCRIPT figures included. Submitted to Physical Review B.
Contact: [email protected]
The Spin Liquid State of the Tb2Ti2O7 Pyrochlore Antiferromagnet: A Puzzling State of Affairs
The pyrochlore antiferromagnet Tb2Ti2O7 has proven to be an enigma to
experimentalists and theorists working on frustrated magnetic systems. The
experimentally determined energy level structure suggests a local Ising
antiferromagnet at low temperatures, T < 10 K. An appropriate model then
predicts a long-range ordered Q = 0 state below approximately 2 K. However,
muon spin resonance experiments reveal a paramagnetic structure down to tens of
milli-Kelvin. The importance of fluctuations out of the ground state effective
Ising doublet has been recently understood, for the measured paramagnetic
correlations can not be described without including the higher crystal field
states. However, these fluctuations treated within the random phase
approximation (RPA) fail to account for the lack of ordering in this system
below 2 K. In this work, we briefly review the experimental evidence for the
collective paramagnetic state of Tb2Ti2O7. The basic theoretical picture for
this system is discussed, where results from classical spin models are used to
motivate the investigation of quantum effects to lowest order via the RPA.
Avenues for future experimental and theoretical work on Tb2Ti2O7 are presented.Comment: Latex2e,6 pages, IOP format, introduction shortened and other minor
corrections, replaced with published version in the Proceedings of the Highly
Frustrated Magnetism 2003 Conference, Grenobl
On the theory of diamagnetism in granular superconductors
We study a highly disordered network of superconducting granules linked by
weak Josephson junctions in magnetic field and develop a mean field theory for
this problem. The diamagnetic response to a slow {\it variations} of magnetic
field is found to be analogous to the response of a type-II superconductor with
extremely strong pinning. We calculate an effective penetration depth
and critical current and find that both and
are non-zero but are strongly suppressed by frustration.Comment: REVTEX, 12 pages, two Postscript figure
Evidence for gapped spin-wave excitations in the frustrated Gd2Sn2O7 pyrochlore antiferromagnet from low-temperature specific heat measurements
We have measured the low-temperature specific heat of the geometrically
frustrated pyrochlore Heisenberg antiferromagnet Gd2Sn2O7 in zero magnetic
field. The specific heat is found to drop exponentially below approximately 350
mK. This provides evidence for a gapped spin-wave spectrum due to an anisotropy
resulting from single ion effects and long-range dipolar interactions. The data
are well fitted by linear spin-wave theory, ruling out unconventional low
energy magnetic excitations in this system, and allowing a determination of the
pertinent exchange interactions in this material
Quantum spin fluctuations in the dipolar Heisenberg-like rare earth pyrochlores
The magnetic pyrochlore oxide materials of general chemical formula R2Ti2O7
and R2Sn2O7 (R = rare earth) display a host of interesting physical behaviours
depending on the flavour of rare earth ion. These properties depend on the
value of the total magnetic moment, the crystal field interactions at each rare
earth site and the complex interplay between magnetic exchange and long-range
dipole-dipole interactions. This work focuses on the low temperature physics of
the dipolar isotropic frustrated antiferromagnetic pyrochlore materials.
Candidate magnetic ground states are numerically determined at zero temperature
and the role of quantum spin fluctuations around these states are studied using
a Holstein-Primakoff spin wave expansion to order 1/S. The results indicate the
strong stability of the proposed classical ground states against quantum
fluctuations. The inclusion of long range dipole interactions causes a
restoration of symmetry and a suppression of the observed anisotropy gap
leading to an increase in quantum fluctuations in the ground state when
compared to a model with truncated dipole interactions. The system retains most
of its classical character and there is little deviation from the fully ordered
moment at zero temperature.Comment: Latex2e, 18 pages, 4 figures, IOP forma
Experimental Predictions of The Functional Response of A Freshwater Fish
The functional response is the relationship between the feeding rate of an animal and its food density. It is reliant on two basic parameters; the volume searched for prey per unit time (searching rate) and the time taken to consume each prey item (handling time). As fish functional responses can be difficult to determine directly, it may be more feasible to measure their underlying behavioural parameters in controlled conditions and use these to predict the functional response. Here, we tested how accurately a Type II functional response model predicted the observed functional response of roach Rutilus rutilus, a visually foraging fish, and compared it with Type I functional response. Foraging experiments were performed by exposing fish in tank aquaria to a range of food densities, with their response captured using a two-camera videography system. This system was validated and was able to accurately measure fish behaviour in the aquaria, and enabled estimates of fish reaction distance, swimming speed (from which searching rate was calculated) and handling time to be measured. The parameterised Type II functional response model accurately predicted the observed functional response and was superior to the Type I model. These outputs suggest it will be possible to accurately measure behavioural parameters in other animal species and use these to predict the functional response in situations where it cannot be observed directly
Random site dilution properties of frustrated magnets on a hierarchical lattice
We present a method to analyze magnetic properties of frustrated Ising spin
models on specific hierarchical lattices with random dilution. Disorder is
induced by dilution and geometrical frustration rather than randomness in the
internal couplings of the original Hamiltonian. The two-dimensional model
presented here possesses a macroscopic entropy at zero temperature in the large
size limit, very close to the Pauling estimate for spin-ice on pyrochlore
lattice, and a crossover towards a paramagnetic phase. The disorder due to
dilution is taken into account by considering a replicated version of the
recursion equations between partition functions at different lattice sizes. An
analysis at first order in replica number allows for a systematic
reorganization of the disorder configurations, leading to a recurrence scheme.
This method is numerically implemented to evaluate the thermodynamical
quantities such as specific heat and susceptibility in an external field.Comment: 26 pages, 11 figure
Local Susceptibility of the Yb2Ti2O7 Rare Earth Pyrochlore Computed from a Hamiltonian with Anisotropic Exchange
The rare earth pyrochlore magnet Yb2Ti2O7 is among a handful of materials
that apparently exhibit no long range order down to the lowest explored
temperatures and well below the Curie-Weiss temperature. Paramagnetic neutron
scattering on a single crystal sample has revealed the presence of anisotropic
correlations and recent work has led to the proposal of a detailed microscopic
Hamiltonian for this material involving significantly anisotropic exchange. In
this article, we compute the local sublattice susceptibility of Yb2Ti2O7 from
the proposed model and compare with the measurements of Cao and coworkers
[Physical Review Letters, {103}, 056402 (2009)], finding quite good agreement.
In contrast, a model with only isotropic exchange and long range magnetostatic
dipoles gives rise to a local susceptiblity that is inconsistent with the data.Comment: 11 pages, 2 figures. Accepted for publication in J. Phys.:Condensed
Matter, in a special issue dedicated on frustrated magnetis
- …