48 research outputs found

    Antibacterial Activity of Gentamicin-bonded Gelatin-sealed Polyethylene Terephthalate Vascular Prostheses

    Get PDF
    AbstractObjectivesTo create an antibiotic-modified vascular prosthesis with a prolonged bactericidal activity, susceptible to endothelialisation.MethodsWe used a covalent method of gentamicin sulphate immobilisation to polyethylene terephthalate prosthesis sealed with gelatin. Antibacterial activity was assayed in Luria-Bertani medium against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa strains. Prosthesis endothelialisation was performed using bovine aorta endothelial cells (BAEC).ResultsGentamicin was bound to vascular prostheses in the amount of 12g per kg of prosthesis. Ninety-seven percent of antibiotic bound in covalent way and remained on the biomaterial for at least 30 days during shaking in PBS solution. Gentamicin-modified prostheses exerted bactericidal or bacteriostatic effect on growth of clinical and reference bacterial strains, prevented biofilm formation and were highly susceptible to endothelialisation. BAEC viability exceeded 90%, which indicated that gentamicin-vascular prostheses were not toxic for these cells.ConclusionsCovalent gentamicin immobilisation resulted in effective antibacterial protection of vascular prostheses against clinical and reference strains of S. aureus, E. coli and P. aeruginosa and allowed for a strong adherence of endothelial cells to antibiotic-modified prostheses

    Modification of bone chitosan/HA scaffold with β-1,3-glucan significantly improves its biocompatibility in vitro

    No full text
    Inżynieria tkankowa kości kładzie nacisk na produkcje trójwymiarowego, porowatego rusztowania, które posiadałoby zdolność stymulowania adhezji, proliferacji i różnicowania osteoblastów. Takie rusztowanie wspierałoby proces regeneracji i tworzenia funkcjonalnej tkanki kostnej [1-3]. Celem niniejszej pracy było udowodnienie za pomocą 2 linii osteoblastycznych, że dodatek β-1,3-glukanu do rusztowania na bazie chitosanu i hydroksyapatytu (chit/HA) skutkuje wytworzeniem nowego, trójskładnikowego kompozytu chitosan/β-1,3-glukan/hydroksyapatyt (chit/glu/HA), który posiada lepszą biokompatybilność w porównaniu do dwuskładnikowego materiału chit/HA. Trójskładnikowe rusztowanie wyprodukowano poprzez modyfikację kompozytu chit/HA za pomocą bakteryjnego β-1,3-glukanu jak to zostało opisane wcześniej [2,3]. Eksperymenty in vitro przeprowadzono z zastosowaniem linii komórkowej prawidłowych ludzkich płodowych osteoblastów (hFOB 1.19) oraz linii komórkowej mysich preosteoblastów (MC3T3-E1 Subclone 4). Cytotoksyczność materiałów oznaczono metodą kontaktu bezpośredniego za pomocą podwójnego barwienia fluorescencyjnego „żywe/martwe komórki”. Kalceina-AM barwi na zielono jedynie żywe komórki, natomiast jodek propidyny barwi kwasy nukleinowe martwych komórek emitując czerwoną fluorescencję jader komórkowych. Wybarwione komórki obserwowano w mikroskopie konfokalnym. Liczbę osteoblastów przyklejonych do powierzchni rusztowań kostnych określono ilościowo po lizie komórek za pomocą testu LDH total. Wzrost i proliferację komórek na powierzchni biokompozytów oceniono poprzez obserwację w mikroskopie konfokalnym stosując podwójne barwienie fluorescencyjne cytoszkieltu i jąder komórkowych. Komórki linii hFOB 1.19 i MC3T3-E1 hodowano bezpośrednio na powierzchni biomateriałów przez 9 dni. Co trzeci dzień komórki barwiono za pomocą barwników fluorescencyjnych AlexaFluor635phalloidin i Hoechst 33342 w celu oceny ich morfologii oraz wzrostu ich liczby w czasie. Barwnik AlexaFluor635phalloidin zapewnia czerwoną fluorescencję filamentów cytoszkieletu, natomiast Hoechst 33342 barwi jadra komórkowe na niebiesko. Barwienie „żywe/martwe komórki” wykazało zgrupowania żywych, emitujących zieloną fluorescencje komórek na powierzchni obydwu biokompozytów (chit/HA i chit/glu/HA). Jednakże, komórki hFOB 1.19 porastające powierzchnię rusztowania chit/HA były okrągłe i nie wykazywały typowego dla ich morfologii podłużnego kształtu, co sugeruje, że nie przykleiły się do powierzchni chit/HA (RYS.1). Ponadto, na powierzchni materiału chit/HA zaobserwowano dość dużą liczbę martwych, czerwonych komórek linii hFOB 1.19. Komórki hFOB 1.19 hodowane na powierzchni chit/glu/HA były rozpłaszczone i miały podłużny kształt, co świadczy o ich dobrej adhezji do powierzchni tego materiału. Komórki linii MC3T3-E1 porastające powierzchnię obydwu materiałów były rozpłaszczone i miały typowy dla nich gwiazdkowaty kształt. Jedynie pojedyncze martwe, czerwone komórki MC3T3-E1 zaobserwowano na powierzchni tych kompozytów. Jednakże w porównaniu do rusztowania chit/glu/HA, zdecydowanie mniej komórek MC3T3-E1 było na powierzchni kompozytu chit/HA. LDH total test wykazał znacząco lepszą adhezję komórek hFOB 1.19 i MC3T3-E1 do powierzchni materiału chit/glu/HA (RYS. 2). Trzy godziny od momentu inokulacji rusztowań, do powierzchni kompozytu chit/HA przykleiło się 30% (1.6 x 104) komórek linii hFOB 1.19, natomiast do materiału chit/glu/HA 50% (2.6x104) komórek. W przypadku komórek linii MC3T3-E1, do materiału chit/HA przykleiło się 20% (1.9x104) komórek, a do kompozytu chit/glu/HA aż 70% Obserwacja mikroskopowa wykazała dobry wzrost i proliferację osteoblastów linii hFOB 1.19 i MC3T3-E1 jedynie na rusztowaniu chit/glu/HA (RYS. 3). Liczba komórek porastających powierzchnię chit/glu/HA wzrastała wraz z wydłużającym się czasem hodowli in vitro. Osteoblasty miały typową dla danej linii komórkowej morfologię i dobrze rozbudowany cytoszkielet. Fluoryzujące na niebiesko jądra komórkowe były również bardzo dobrze widoczne. Po 9 dniach prowadzenia hodowli, powierzchnia rusztowania chit/glu/HA była pokryta wielowarstwą komórek linii Hiob 1.19 i MC3T3-E1, które posiadały dobrze rozwiniętą sieć filamentów cytoszkieletu i liczne wypustki cytoplazmatyczne. Osteoblasty hodowane na materiale chit/glu/HA były rozpłaszczone i posiadały dobrze rozbudowaną strukturę cytoszkieletu, co sugeruje, że ten materiał sprzyja adhezji i proliferacji komórek. Udowodniono, że materiał chit/HA całkowicie nie sprzyja adhezji, wzrostowi i proliferacji komórek hFOB 1.19. Przez cały czas trwania eksperymentu na powierzchni chit/HA zaobserwowano jedynie pojedyncze, okrągłe komórki hFOB 1.19. Co więcej, ich liczba nie wzrastała w czasie, a komórki były drobne i okrągłe, co może świadczyć o tym, że były martwe. W przypadku komórek linii MC3T3-E1, 3 dni po inokulacji materiału chit/HA zaobserwowano jedynie pojedyncze komórki na powierzchni próbki (RYS. 3). Ponadto, komórki MC3T3-E1 były okrągłe i nie miały typowego gwiazdkowego kształtu, co świadczy o ich słabej adhezji do powierzchni chit/HA. Jednakże, liczba komórek MC3T3-E1 wzrastała w czasie i po 9 dniach prowadzenia hodowli na powierzchni materiału chit/HA zaobserwowano obszary o małej gęstości komórek MC3T3-E1, które miały gwiazdkowaty kształt, widoczny cytoszkielet i wypustki cytoplazmatyczne. Przeprowadzone eksperymenty in vitro oraz uzyskane zdjęcia z mikroskopu konfokalnego wyraźnie udowadniają, że dodatek β-1,3-glukanu do rusztowania chit/HA stymuluje adhezję, wzrost i proliferację komórek linii hFOB 1.19 i MC3T3-E1. Oba testowane biomateriały były nietoksyczne i pozwalały na wstępną adhezję komórek. Jednakże na powierzchni rusztowania zawierającego β-1,3-glukan zaobserwowano znacząco lepsze rozpłaszczanie się komórek, ich szybszy wzrost i proliferację. Analizując uzyskane wyniki można wysnuć wniosek, że nowy trójskładnikowy kompozyt jest obiecującym materiałem do stosowania w inżynierii tkankowej kości jako rusztowanie komórek mające za zadanie przyspieszenie procesów regeneracyjnych oraz tworzenie nowej, funkcjonalnej tkanki kostnej. (7x104) komórek.Bone tissue engineering put emphasis on fabrication three-dimensional porous scaffolds that possess ability to enhance adhesion, proliferation and differentiation of osteoblast cells, therefore supporting bone regeneration and functional bone tissue formation [1-3]. The aim of this work was to prove using 2 osteoblastic cell lines that addition of β-1,3-glucan to chitosan/hydroxyapatite (chit/HA) scaffold results in fabrication of novel tri-component chitosan/β-1,3-glucan/hydroxyapatite (chit/glu/HA) composite that possesses better biocompatibility compared to bi-component chit/HA material. Tri-component scaffold was fabricated by modification of chit/HA composite with bacterial β-1,3-glucan as was described previously [2,3]. In vitro experiments were carried out using human foetal osteoblast cell line (hFOB 1.19) and mouse calvarial preosteoblast cell line (MC3T3-E1 Subclone 4). Cytotoxicity of the scaffolds was evaluated by direct-contact method using live/dead double fluorescent staining. The calcein-AM dye stains only viable cells giving green fluorescence and propidium iodide dye stains nucleic acids of only dead cells emitting red fluorescence. Stained cells were observed under confocal microscope. Cell adhesion to the scaffold surfaces was determined quantitatively after cell lysis by LDH total test. Cell growth and proliferation on the biocomposite surfaces were evaluated by confocal microscope observation using double fluorescent staining of osteoblast cytoskeleton and nuclei. HFOB 1.19 and MC3T3-E1 cells were cultured directly on the scaffold surfaces for 9 days and every third day cells were stained with AlexaFluor635phalloidin and Hoechst 33342 fluorescent dyes in order to assess cell morphology and increase in cell number. AlexaFluor635phalloidin dye provides red fluorescence of cytoskeletal filaments, while Hoechst 33342 gives blue fluorescence of nuclei. Live/dead double staining showed clusters of viable green fluorescent osteoblast cells on the surface of both biocomposite samples (chit/HA and chit/glu/HA). However, hFOB 1.19 cells growing on the chit/HA surface were spherical and did not reveal their typical lengthened shape what indicates that hFOB 1.19 cells were not attached to the chit/HA surface (FIG.1). Moreover, there were quite a lot of dead, red fluorescent hFOB 1.19 cells on the chit/HA material. HFOB 1.19 cells cultured on the chit/glu/HA sample were flattened and had lengthened shape what proves their good adhesion to the composite surface. MC3T3-E1 cells growing on both materials were flattened and revealed typical stellar shape. Only occasional dead red fluorescent cells were observed. However, there were meaningfully less MC3T3-E1 cells on the surface of chit/HA composite compared to chit/glu/HA sample. LDH total assay demonstrated significantly higher number of hFOB 1.19 and MC3T3-E1 cells attached to the chit/glu/HA compared to the chit/HA sample (FIG. 2). Three hours after cell inoculation there were 30% (1.6x104 cells) and 50% (2.6x10/4 cells) of hFOB 1.19 cells attached to the chit/HA and chit/glu/HA composites, respectively and 20% (1.9x104 cells) and 70% (7x104 cells) of MC3T3-E1 cells attached to the chit/HA and chit/glu/HA scaffolds, respectively. Microscopic observation showed good osteoblast growth and proliferation only on chit/glu/HA scaffold (FIG.3). The number of hFOB 1.19 and MC3T3-E1 cells growing on the chit/glu/HA increased with time during the in vitro culture. Osteoblasts revealed their typical morphology and had well extensive cytoskeleton. There were also well visible blue fluorescent nuclei. After 9-day culture, chit/glu/HA surface was covered by multilayer of hFOB 1.19 and MC3T3-E1 cells, which revealed extensive network of cytoskeletal filaments and numerous filopodia. Osteoblast cells cultured on the chit/glu/HA were well spread, flattened and generated large filamentous structure of the cytoskeleton what indicates that this scaffold is very favourable to cell adhesion and proliferation. The chit/HA biomaterial was proved to be completely unfavourable to adhesion, growth, and proliferation of hFOB 1.19 cells. Only single spherical hFOB 1.19 cells were observed on the chit/HA sample throughout the full length of the experiment. Moreover, the hFOB 1.19 cell number did not increase with time, cells were tiny and spherical what may indicate that were already dead. In the case of MC3T3-E1 cells, 3 days after cell seeding there were only individual MC3T3-E1 cells on the chit/HA surface (Fig. 3). Furthermore, visualized MC3T3-E1 cells were spherical and did not reveal typical stellar shape what indicates that cells were not well attached. However, the number of MC3T3-E1 cells increased with time and 9 days after cell inoculation there was low density culture of stellar shape MC3T3-E1 cells with visible cytoskeleton and filopodia on the chit/HA material. Conducted in vitro experiments and obtained confocal microscopy images clearly prove that addition of β-1,3-glucan to the chit/HA scaffold enhances adhesion, growth, and proliferation of hFOB 1.19 and MC3T3-E1 cells. Both investigated biomaterials were non-toxic and allowed for initial cell attachment. However, significantly better cell spreading, growth, and proliferation were observed on the scaffold containing β-1,3-glucan. Based on the obtained results, it may be inferred that novel tri-component composite is promising material for bone tissue engineering applications as cell scaffold to accelerate bone regeneration and new bone formation process

    Characterization of the novel antimicrobial tosufoxacin-treated urinary catheter

    No full text
    Przeciwbakteryjny cewnik moczowy poddany działaniu tosufloksacyny (TOS) otrzymano przez im - mobilizację TOS na powierzchni cewnika, uprzednio pokrytego chitozanem, z użyciem aldehydowego łącznika. Całkowitą ilość antybiotyku przyłączonego do chitozanowej warstwy oceniono na podstawie różnicy w stężeniu leków, przed i po immobilizacji, zmierzonych metodą HPLC. Jak udowodniły badania uwalniania in vitro, antybiotyk został połączony z matrycą cewnika na dwa sposoby: stosunkowo stabilne wiązanie kowalencyjne i słabe wiązanie niekowalencyjne. Aktywność przeciwbakteryjną cewnika modyfikowanego antybiotykiem wobec szczepów S. aureus i E. coli oceniono stosując test hamowania stref i test liczenia kolonii. Przeprowadzone badania wykazały, że immobilizacja TOS na powierzchni cewnika stanowi stabilną przeciwbakteryjną ochronę przez co najmniej 30 dni.Antimicrobial tosufloxacin (TOS)-treated urinary catheter was developed by the immobilization of TOS on the catheter xc vvvvsurface, previously coated with chitosan, by use of aldehyde as linker (according to the patented method). The total amount of the antibiotic attached to the chitosan layer was evaluated on the basis of the difference in the drug concentration before and after immobilization measured by HPLC method. As demonstrated by in vitro release studies, the antibiotic was coupled with the catheter matrix in two modes: relatively stable covalent binding and weak non-covalent binding. Antimicrobial activity of the antibiotic-modified catheter against S. aureus and E. coli strains was assessed using the zone of inhibition and colony count assays. The performed research indicated that the immobilization of TOS on the catheter surface resulted in the stable antibacterial protection for at least 30 days

    Chitosan/β-1,3-glucan/HA bone scaffold possesses osteopromotive properties in vitro

    No full text

    Ionic ciprofloxacin binding to different types of vascular prostheses

    No full text

    Biological evaluation of β-1,3-glucan/HA bone scaffold fabricated via new method

    No full text

    Antibacterial properties of vascular grafts modified with cefepime

    No full text

    Evaluation of the binding of fluoroquinolone antibiotics to the vascular prosthesis

    No full text
    Przeciwbakteryjną protezę naczyniową otrzymano przez kowalencyjne wiązanie sparfloksacyny (SPA) lub tosufloksacyny (TOS) z jej żelatynowaną powierzchnią z użyciem aldehydowego i aminowego łącznika. Ilości obydwu antybiotyków związanych z żelatynową warstwą oceniono na podstawie różnic w stężeniu leków, przed i po immobilizacji, określanych metodą HPLC. Aktywność przeciwbakteryjną protezy modyfikowanej antybiotykiem wobec szczepów oceniono stosując test hamowania stref wzrostu i test liczenia kolonii. Przeprowadzone z użyciem szczepów Staphylococcus aureus i Echerichia coli badania wykazały, że kowalencyjna immobilizacja SPA i TOS na powierzchni implantu stanowi stabilną przeciwbakteryjną ochronę przez co najmniej 2 tygodnie.Antimicrobial gelatine-sealed vascular prosthesis was developed by the covalent bonding of sparfloxacin (SPA) or tosufloxacin (TOS) to their surface by using of aldehyde and amine linkers. The amounts of both antibiotics bound to the gelatine layer were evaluated on the basis of the differences in drug concentrations before and after immobilization measured by HPLC method. Antimicrobial activity of antibiotic-modified prosthesis against Staphylococcus aureus and Escherichia coli strains was assessed using zone of inhibition and colony count assays. The performed researches indicated that the covalent immobilization of SPA and TOS on the graft surface resulted in stable antibacterial protection for at least of 2 weaks

    Estimation of possibility of fluoroquinolone antibiotics immobilization to polyethylene terephthalate

    No full text
    corecore