3 research outputs found

    The Response of Synechococcus sp. PCC 7002 to Micro-/Nano polyethylene Particles - Investigation of a Key Anthropogenic Stressor

    Get PDF
    Microplastics or plastic particles less than 5 mm in size are a ubiquitous and damaging pol- lutant in the marine environment. However, the interactions between these plastic particles and marine microorganisms are just starting to be understood. The objective of this study was to measure the responses of a characteristic marine organism (Synechococcus sp. PCC 7002) to an anthropogenic stressor (polyethelene nanoparticles and microparticles) using molecular techniques. This investigation showed that polyethylene microparticles and nanoparticles have genetic, enzymatic and morphological effects on Synechococcus sp. PCC 7002. An RT-PCR analysis showed increases in the expression of esterase and hydro- lase genes at 5 days of exposure to polyethylene nanoparticles and at 10 days of exposure to polyethylene microparticles. A qualitative enzymatic assay also showed esterase activity in nanoparticle exposed samples. Cryo-scanning electron microscopy was used to assess morphological changes in exopolymer formation resulting from exposure to polyethylene microparticles and nanoparticles. The data from this paper suggests that microplastic and nanoplastics could be key microbial stressors and should be investigated in further detail

    Interaction of Cyanobacteria with Nanometer and Micron Sized Polystyrene Particles in Marine and Fresh Water

    No full text
    Microplastics and nanoplastics are emerging pollutants, widespread both in marine and in freshwater environments. Cyanobacteria are also ubiquitous in water and play a vital role in natural ecosystems, using photosynthesis to produce oxygen. Using photography, fluorescence microscopy and cryogenic and scanning electron microscopy (cryo-SEM, SEM) we investigated the physicochemical response of one of the most predominant seawater cyanobacteria (Synechococcus elongatus, PCC 7002) and freshwater cyanobacteria (S. elongatus Nageli PCC 7942) when exposed to 10 μm diameter polystyrene (microPS) and 100 nm diameter polystyrene (nanoPS) particles. Marine and freshwater cyanobacteria formed aggregates with the nanoPS, bound together by extracellular polymeric substances (EPS), and these aggregates sedimented. The aggregates were larger, and the sedimentation was more rapid for the marine system. Aggregate morphologies were qualitatively different for the microPS samples, with the bacteria linking up a small number of particles, all held together by EPS. There was no sedimentation in these samples. The cyanobacteria remained alive after exposure to the particles. The particle size- and salt concentration-dependent response of cyanobacteria to these anthropogenic stressors is an important factor to consider for a proper understanding of the fate of the particles as well as the bacteria
    corecore