3 research outputs found
About detectability and limits of detection in single particle inductively coupled plasma mass spectrometry
Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) offers unique features for the detection of particles, as well as for their quantification and size characterization. The detection capabilities of SP-ICP-MS are therefore not only limited to the concentration domains (of particles and dissolved related species), but also to the mass of element per particle and particle size domains. Discrimination and detection of particle events, based on the use of robust limits of decision (also known as critical values), and the estimation of the limits of detection in the different domains, require standardized metrological approaches that have not been clearly established yet. As a consequence, harmonized approaches and expressions to allow reliable comparisons between methods and instruments, as well as to process SP-ICP-MS data, are required. This paper is an attempt to summarize and review the different approaches applied up to now in relation to the detectability in SP-ICP-MS, and highlight the peculiarities of this topic in SP-ICP-MS. A holistic approach with criteria and expressions for the estimation of the different critical values and limits of detection in terms of the different instrumental and experimental parameters involved is proposed. Additionally, a calculation tool for estimating and predicting critical values and limits of detection under different experimental conditions is also included
Contribution to optimization and standardization of antibacterial assays with silver nanoparticles: the culture medium and their aggregation
The antimicrobial activity of silver nanoparticles is determined by their size and specific properties, as well as by the chemical composition of the exposure medium in which the nanoparticles are suspended. When the antibacterial tests are carried out in a culture medium, aggregation of the nanoparticles is produced, decreasing their effectiveness. This study proposes the addition of surfactants to the culture medium to prevent the aggregation of silver nanoparticles and optimizes the concentrations of these surfactants. The aggregation of silver nanoparticles was studied by dynamic light scattering (DLS) after dispersion in three liquid culture media (Mueller-Hinton (MH), Luria-Bertani (LB) and Brain Heart Infusion) in which four different surfactants (SDS, Triton X100, Tween 80 and CTAB) were added at concentrations of 0, 0.1, 0.5, 1, 1.5 and 2%. Results showed that, the optimal culture media to prevent aggregation of silver nanoparticles were MH and LB with higher concentrations of Tween 80 and Triton X100 surfactants; being MH + 2% of Tween 80 and MH + 1% Triton X100 the best combinations obtained because the results obtained were closest to the sizes of nanoparticles in ultrapure water. In addition, it has been verified that the optimal medium + surfactant combinations chosen did not affect the viability of Escherichia coli bacteria. Nanoparticle aggregation was not observed by single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) when nanoparticles were incubated for long incubations periods (24 h) in the optimal medium chosen
Analytical applications of single particle inductively coupled plasma mass spectrometry: a comprehensive and critical review
Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) refers to the use of ICP-MS as a particle counting technique. When ICP-MS measurements are performed at very high data acquisition frequencies, information about (nano)particles containing specific elements and their dissolved forms can be obtained (element mass per particle, size and number and mass concentrations). As a result of its outstanding performance, SP-ICP-MS has become a relevant technique for the analysis of complex samples containing inorganic nanoparticles. This review discusses the maturity level achieved by the technique through the methods developed for the detection, characterisation and quantification of engineered and natural (nano)particles. The application of these methods in different analytical scenarios is comprehensively reviewed and critically discussed, with special attention to their current technical and metrological limitations. The emergent applications of SP-ICP-MS in the field of nanoparticle-tagged immunoassay and hybridization methods are also reviewed