41 research outputs found

    A turbulent bed contactor: Energetic efficiency for particle collection

    Get PDF
    Particle collection experiments were conducted in a fluidizing irrigated bed to evaluate the performance of mobile packings: 38 x 50 mm plain oblate spheroids 38 mill ID plain spheres and alternative perforated spheres with a 38 mm ID and 10% and 25% free areas were used as fluidizing media in a 0.264 in diameter and 1.20 m high turbulent bed contactor (TBC). Particle collection experiments were carried out above the minimum fluidization velocity, using as particulate test powder polysized alumina (size 1.5 to 5.5 mu m). Experimental results demonstrated that the perforated spheres performed better in collecting particles than the other packings tested. The efficiency of particle collection was analysed based on energy consumption in the TBC, using the energetic efficiency concept. It was verified that not much more energy was consumed per unit of gas flow in fluidized beds of perforated packings than in those of conventional plain sphere packings, since the perforated spheres were more energetically efficient for particle collection than plain spheres and oblate spheroid packings.241374

    Genetic diversity analysis in the section Caulorrhizae (genus Arachis) using microsatellite markers

    Get PDF
    Diversity in 26 microsatellite loci from section Caulorrhizae germplasm was evaluated by using 33 accessions of A. pintoi Krapov. & W.C. Gregory and ten accessions of Arachis repens Handro. Twenty loci proved to be polymorphic and a total of 196 alleles were detected with an average of 9.8 alleles per locus. The variability found in those loci was greater than the variability found using morphological characters, seed storage proteins and RAPD markers previously used in this germplasm. The high potential of these markers to detect species-specific alleles and discriminate among accessions was demonstrated. The set of microsatellite primer pairs developed by our group for A. pintoi are useful molecular tools for evaluating Section Caulorrhizae germplasm, as well as that of species belonging to other Arachis sections

    Three-dimensional echocardiography for left ventricular quantification: fundamental validation and clinical applications

    Get PDF
    One of the earliest applications of clinical echocardiography is evaluation of left ventricular (LV) function and size. Accurate, reproducible and quantitative evaluation of LV function and size is vital for diagnosis, treatment and prediction of prognosis of heart disease. Early three-dimensional (3D) echocardiographic techniques showed better reproducibility than two-dimensional (2D) echocardiography and narrower limits of agreement for assessment of LV function and size in comparison to reference methods, mostly cardiac magnetic resonance (CMR) imaging, but acquisition methods were cumbersome and a lack of user-friendly analysis software initially precluded widespread use. Through the advent of matrix transducers enabling real-time three-dimensional echocardiography (3DE) and improvements in analysis software featuring semi-automated volumetric analysis, 3D echocardiography evolved into a simple and fast imaging modality for everyday clinical use. 3DE provides the possibility to evaluate the entire LV in three spatial dimensions during the complete cardiac cycle, offering a more accurate and complete quantitative evaluation the LV. Improved efficiency in acquisition and analysis may provide clinicians with important diagnostic information within minutes. The current article reviews the methodology and application of 3DE for quantitative evaluation of the LV, provides the scientific evidence for its current clinical use, and discusses its current limitations and potential future directions
    corecore