22 research outputs found
Factors influencing flow steadiness in laminar boundary layer shock interactions
The Direct Simulation Monte Carlo method has been used to model laminar shock wave boundary interactions of hypersonic flow over a 30/55-deg double-wedge and “tick-shaped” model configurations studied in the Hypervelocity Expansion Tube facility and T-ADFA free-piston shock tunnel, respectively. The impact of thermochemical effects on these interactions by changing the chemical composition from nitrogen to air as well as argon for a stagnation enthalpy of 8.0 MJ/kg flow are investigated using the 2-D wedge model. The simulations are found to reproduce many of the classic features related to Edney Type V strong shock interactions that include the attached, oblique shock formed over the first wedge, the detached bow shock from the second wedge, the separation zone, and the separation and reattachment shocks that cause complex features such as the triple point for both cases. However, results of a reacting air flow case indicate that the size of the separation length, and the movement of the triple point toward to the leading edge is much less than the nitrogen case
Modeling of near-continuum laminar boundary layer shocks using DSMC
The hypersonic flow of nitrogen gas over a double wedge was simulated by the DSMC method using two-dimensional and three-dimensional geometries. The numerical results were compared with experiments conducted in the HET facility for a high-enthalpy pure nitrogen flow corresponding to a free stream Mach number of approximately seven. Since the conditions for the double wedge case are near-continuum and surface heat flux and size of the separation are sensitive to DSMC numerical parameters, special attention was paid to the convergence of these parameters for both geometries. At the beginning of the simulation, the separation zone was predicted to be small and the heat flux values for the 2-D model were comparable to the experimental data. However, for increasing time, it was observed that the heat flux values and shock profile strongly deviated from the experiment. Investigation of a three-dimensional model showed that the flow is truly three-dimensional and the side edge pressure relief provides good agreement between simulations and the experiment
Kinetic and continuum modeling of high-temperature oxygen and nitrogen binary mixtures
The present paper provides a comprehensive comparative analysis of thermochemistry models of various fidelity levels developed in leading research groups around the world. Fully kinetic, hybrid kinetic-continuum, and fully continuum approaches are applied to analyze parameters of hypersonic flows starting from the revision of single-temperature rate constants up to the application in 1-D postshock conditions. Comparison of state-specific and two-temperature approaches shows there are very significant and often qualitative differences in the time-dependent nonequilibrium reaction rates and their ratio to the corresponding single-temperature rates. A major impact of the vibration-dissociation coupling on the temporal relaxation of gas properties is shown. For instance, the legacy Park's model has a strongly nonlinear behavior of nonequilibrium reaction rate with vibrational temperature, while a nearly linear shape exists for all state-specific approaches. Analysis of vibrational level populations in the nonequilibrium region shows a profound impact of the numerical approach and the model on the population ratios, and thus vibrational temperatures inferred from such ratios. The difference in the ultraviolet absorption coefficients, calculated by a temperature-based spectral code using vibrational populations from state-specific and kinetic approaches, is found to exceed an order of magnitude
Kinetic and continuum modeling of high-temperature air relaxation
Fully kinetic, vibrationally kinetic, and continuum solvers with varying model fidelity are used in this work to model the high-temperature relaxation of air in 7230 and 15,000 K adiabatic heat baths and a 6 km/s hypersonic flow over a cylinder. The results show significant impact of uncertainties in vibrational relaxation times and reaction rate constants on thermal and chemical relaxation, in particular, on gas temperature and species mole fractions. Most notably, these uncertainties need to be reduced for collisions that include nitric oxide. Order-of-magnitude differences in the nitric oxide dissociation and recombination rates have a large impact on the peak NO mole fraction immediately behind the shock and surface-distributed heat flux, respectively. High-fidelity kinetic and continuum approaches are found to have different reaction channels having the largest effect on species mole fractions and gas temperature: N-2+O exchange and O-2+O dissociation in the former, and NO+O and O-2+N-2 dissociation in the latter