92 research outputs found
Computing approximate standard errors for genetic parameters derived from random regression models fitted by average information REML
Approximate standard errors (ASE) of variance components for random regression coefficients are calculated from the average information matrix obtained in a residual maximum likelihood procedure. Linear combinations of those coefficients define variance components for the additive genetic variance at given points of the trajectory. Therefore, ASE of these components and heritabilities derived from them can be calculated. In our example, the ASE were larger near the ends of the trajectory
Estimation in a multiplicative mixed model involving a genetic relationship matrix
Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs) in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA) form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments
Wool and meat genetics - the joint possibilities
Wool and meat contribute to profit in sheep enterprises and both need to be considered in breeding programs. The relative responses expected from selection for a range of traits are presented and the realised responses that have been achieved in Merinos and variation in maternal breeds are illustrated. Knowledge of genetic parameters is required for the development of complex breeding objectives and selection indexes, comprehensive genetic evaluation of animals and the design of effective breeding programs. A review of world literature has highlighted the lack of accurate estimates of genetic parameters, especially for genetic correlations between trait groups. Analyses of a combined dataset from seven Australian Merino resource flocks comprising over 2000 sires and up to 100,000 records for each of various traits have provided accurate estimates of parameters to fill these gaps in current knowledge. The results show that there are no major genetic antagonisms between wool and meat traits and that improvement of both can be achieved by using appropriate selection indexes. Sheep Genetics Australia now provides a common system for genetic evaluation of Australian sheep, including across-flock estimated breeding values for a comprehensive range of traits and several standard indexes for various wool and meat breeding objectives
Sheep Updates 2006 - part 2
This session covers six papers from different authors:
GENETICS
1. Novel selection traits - what are the possible side effects?, Darryl Smith, Kathryn Kemper, South Australian Research and Development Institute, David Rutley, University of Adelaide.
2. Genetic Changes in the Australian Merino since 1900, Sheep Genetics Australia Technical Committee, R.R. Woolaston Pullenvale, Queensland, D.J. Brown, Animal Genetics and Breeding Unit*, University of New England, K.D. Atkins, A.E. Casey, NSW Department of Primary Industries, A.J. Ball, Meat and Livestock Australia, University of New England
3. Influence of Sire Growth Estimated Breeding Value (EBV0 on Progeny Growth, David Hopkins, David Stanley, Leonie Martin, NSW Department Primary Industries, Centre for Sheep Meat Development, Arthur Gilmour, Remy van de Ven, NSW Department Primary Industries, Orange Agricultural Institute
FINISHING
4. Predicting Input Sensitivity on Lamb Feedlot Profitability by Using Feedlot Calculator, David Stanley, NSW Department Primary Industries, Centre for Sheep Meat Development, Geoff Duddy, NSW Department Primary Industries, Yanco Agricultural Institute, Steve Semple, NSW Department Primary Industries, Orange Agricultural Institute, David Hopkins, NSW Department Primary Industries, Centre for Sheep Meat Development
5. Annual ryegrass toxicity (ARGT) in WA - 2006, David Kessell, Meat & Livestock Australia ARGT Project, Northam, WA
6. Poor ewe nutrition during pregnancy increases fatness of their progeny, Andrew Thompson, Department of Primary Industries, Victori
Mitogen- and Stress-Activated Kinase 1 (MSK1) Regulates Cigarette Smoke-Induced Histone Modifications on NF-κB-dependent Genes
Cigarette smoke (CS) causes sustained lung inflammation, which is an important event in the pathogenesis of chronic obstructive pulmonary disease (COPD). We have previously reported that IKKα (I kappaB kinase alpha) plays a key role in CS-induced pro-inflammatory gene transcription by chromatin modifications; however, the underlying role of downstream signaling kinase is not known. Mitogen- and stress-activated kinase 1 (MSK1) serves as a specific downstream NF-κB RelA/p65 kinase, mediating transcriptional activation of NF-κB-dependent pro-inflammatory genes. The role of MSK1 in nuclear signaling and chromatin modifications is not known, particularly in response to environmental stimuli. We hypothesized that MSK1 regulates chromatin modifications of pro-inflammatory gene promoters in response to CS. Here, we report that CS extract activates MSK1 in human lung epithelial (H292 and BEAS-2B) cell lines, human primary small airway epithelial cells (SAEC), and in mouse lung, resulting in phosphorylation of nuclear MSK1 (Thr581), phospho-acetylation of RelA/p65 at Ser276 and Lys310 respectively. This event was associated with phospho-acetylation of histone H3 (Ser10/Lys9) and acetylation of histone H4 (Lys12). MSK1 N- and C-terminal kinase-dead mutants, MSK1 siRNA-mediated knock-down in transiently transfected H292 cells, and MSK1 stable knock-down mouse embryonic fibroblasts significantly reduced CS extract-induced MSK1, NF-κB RelA/p65 activation, and posttranslational modifications of histones. CS extract/CS promotes the direct interaction of MSK1 with RelA/p65 and p300 in epithelial cells and in mouse lung. Furthermore, CS-mediated recruitment of MSK1 and its substrates to the promoters of NF-κB-dependent pro-inflammatory genes leads to transcriptional activation, as determined by chromatin immunoprecipitation. Thus, MSK1 is an important downstream kinase involved in CS-induced NF-κB activation and chromatin modifications, which have implications in pathogenesis of COPD
Social–environmental drivers inform strategic management of coral reefs in the Anthropocene
Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages—the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014–2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse
- …