36 research outputs found
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
A Search for Technosignatures Around 11,680 Stars with the Green Bank Telescope at 1.15-1.73 GHz
We conducted a search for narrowband radio signals over four observing
sessions in 2020-2023 with the L-band receiver (1.15-1.73 GHz) of the 100 m
diameter Green Bank Telescope. We pointed the telescope in the directions of 62
TESS Objects of Interest, capturing radio emissions from a total of ~11,680
stars and planetary systems in the ~9 arcminute beam of the telescope. All
detections were either automatically rejected or visually inspected and
confirmed to be of anthropogenic nature. In this work, we also quantified the
end-to-end efficiency of radio SETI pipelines with a signal injection and
recovery analysis. The UCLA SETI pipeline recovers 94.0% of the injected
signals over the usable frequency range of the receiver and 98.7% of the
injections when regions of dense RFI are excluded. In another pipeline that
uses incoherent sums of 51 consecutive spectra, the recovery rate is ~15 times
smaller at ~6%. The pipeline efficiency affects calculations of transmitter
prevalence and SETI search volume. Accordingly, we developed an improved Drake
Figure of Merit and a formalism to place upper limits on transmitter prevalence
that take the pipeline efficiency and transmitter duty cycle into account.
Based on our observations, we can state at the 95% confidence level that fewer
than 6.6% of stars within 100 pc host a transmitter that is detectable in our
search (EIRP > 1e13 W). For stars within 20,000 ly, the fraction of stars with
detectable transmitters (EIRP > 5e16 W) is at most 3e-4. Finally, we showed
that the UCLA SETI pipeline natively detects the signals detected with AI
techniques by Ma et al. (2023).Comment: 22 pages, 9 figures, submitted to AJ, revise
Consuming a Ketogenic Diet while Receiving Radiation and Chemotherapy for Locally Advanced Lung Cancer and Pancreatic Cancer: The University of Iowa Experience of Two Phase 1 Clinical Trials.
Ketogenic diets are low in carbohydrates and high in fat, which forces cells to rely more heavily upon mitochondrial oxidation of fatty acids for energy. Relative to normal cells, cancer cells are believed to exist under a condition of chronic mitochondrial oxidative stress that is compensated for by increases in glucose metabolism to generate reducing equivalents. In this study we tested the hypothesis that a ketogenic diet concurrent with radiation and chemotherapy would be clinically tolerable in locally advanced non-small cell lung cancer (NSCLC) and pancreatic cancer and could potentially exploit cancer cell oxidative metabolism to improve therapeutic outcomes. Mice bearing MIA PaCa-2 pancreatic cancer xenografts were fed either a ketogenic diet or standard rodent chow, treated with conventionally fractionated radiation (2 Gy/fraction), and tumor growth rates were assessed daily. Tumors were assessed for immunoreactive 4-hydroxy-2-nonenal-(4HNE)-modfied proteins as a marker of oxidative stress. Based on this and another previously published preclinical study, phase 1 clinical trials in locally advanced NSCLC and pancreatic cancer were initiated, combining standard radiation and chemotherapy with a ketogenic diet for six weeks (NSCLC) or five weeks (pancreatic cancer). The xenograft experiments demonstrated prolonged survival and increased 4HNE-modfied proteins in animals consuming a ketogenic diet combined with radiation compared to radiation alone. In the phase 1 clinical trial, over a period of three years, seven NSCLC patients enrolled in the study. Of these, four were unable to comply with the diet and withdrew, two completed the study and one was withdrawn due to a dose-limiting toxicity. Over the same time period, two pancreatic cancer patients enrolled in the trial. Of these, one completed the study and the other was withdrawn due to a dose-limiting toxicity. The preclinical experiments demonstrate that a ketogenic diet increases radiation sensitivity in a pancreatic cancer xenograft model. However, patients with locally advanced NSCLC and pancreatic cancer receiving concurrent radiotherapy and chemotherapy had suboptimal compliance to the oral ketogenic diet and thus, poor tolerance