173 research outputs found
Migration efficiency of paired sperm in the tract of the peri-ovulatory female grey short-tailed opossum (Monodelphis domestica)
American marsupials are the only mammals known to ejaculate paired spermatozoa, which confer a motility advantage in vitro over single spermatozoa in viscous environments. In the only American marsupial examined, the Virginian opossum (Didelphidae), relatively low numbers of spermatozoa are ejaculated (106), but transport is extremely efficient with ~1 in 20 spermatozoa reaching the site of fertilization compared to ~1 in 10,000 in the rabbit. This study examined the post-copulatory distribution and state (paired or single) of spermatozoa at various times in the female reproductive tract of another didelphid, the polyovular grey short-tailed opossum (Monodelphis domestica). After a single mating, the reproductive tracts of 19 females were dissected at 0.5 (n=4), 6 (n=4), 12 (n=3), 18 (n=3) and 24h (n=5) post coitum (p.c.). Each tract was dissected into 8 major anatomical sections and spermatozoa were recovered by flushing. Mating occurred 5.4 ± 0.4d (mean ± SEM; n=19) after pairing, copulation lasted 4.4 ± 0.2 min (n=18) and ovulation occurred 18.0 - 24.1h p.c. (n=5). Shortly after mating (0.5h p.c.) the tract contained 1.2 ± 0.2g of seminal gel (n=2) and 2.0 ± 1.3 x106 spermatozoa (n=3; 38% of which were paired) found predominantly in the anterior vaginal culs de sac. A uterine sperm reservoir was never observed, but spermatozoa reached the isthmus and ampulla within 6 and 18h p.c. respectively. Paired spermatozoa localized almost exclusively in the isthmus from 6h p.c., and pairing decreased to only 4% of the total sperm population in the tract by the start of ovulation. In total ~1 in 300 ejaculated spermatozoa (~6.5 x103; n=9) reached the oviduct. In conclusion, sperm pairing appears to confer effective colonization of the isthmus in M. domestica and, like the Virginian opossum, transport of spermatozoa is relatively efficient
Gut microbiome and brain functional connectivity in infants-a preliminary study focusing on the amygdala
Recently, there has been a surge of interest in the possibility that microbial communities inhabiting the human gut could affect cognitive development and increase risk for mental illness via the “microbiome-gut-brain axis.” Infancy likely represents a critical period for the establishment of these relationships, as it is the most dynamic stage of postnatal brain development and a key period in the maturation of the microbiome. Indeed, recent reports indicate that characteristics of the infant gut microbiome are associated with both temperament and cognitive performance. The neural circuits underlying these relationships have not yet been delineated. To address this gap, resting-state fMRI scans were acquired from 39 1-year-old human infants who had provided fecal samples for identification and relative quantification of bacterial taxa. Measures of alpha diversity were generated and tested for associations with measures of functional connectivity. Primary analyses focused on the amygdala as manipulation of the gut microbiota in animal models alters the structure and neurochemistry of this brain region. Secondary analyses explored functional connectivity of nine canonical resting-state functional networks. Alpha diversity was significantly associated with functional connectivity between the amygdala and thalamus and between the anterior cingulate cortex and anterior insula. These regions play an important role in processing/responding to threat. Alpha diversity was also associated with functional connectivity between the supplementary motor area (SMA, representing the sensorimotor network) and the inferior parietal lobule (IPL). Importantly, SMA-IPL connectivity also related to cognitive outcomes at 2 years of age, suggesting a potential pathway linking gut microbiome diversity and cognitive outcomes during infancy. These results provide exciting new insights into the gut-brain axis during early human development and should stimulate further studies into whether microbiome-associated changes in brain circuitry influence later risk for psychopathology
Life expectancy in older adults with advanced cancer: Evaluation of a geriatric assessment-based prognostic model
Objectives: Oncologists estimate patients' prognosis to guide care. Evidence suggests oncologists tend to overestimate life expectancy, which can lead to care with questionable benefits. Information obtained from geriatric assessment may improve prognostication for older adults. In this study, we created a geriatric assessment-based prognostic model for older adults with advanced cancer and compared its performance to alternative models. Materials and methods: We conducted a secondary analysis of a trial (URCC 13070; PI: Mohile) capturing geriatric assessment and vital status up to one year for adults age ≥ 70 years with advanced cancer. Oncologists estimated life expectancy as 0–6 months, 7–12 months, and > 1 year. Three statistical models were developed: (1) a model including age, sex, cancer type, and stage (basic model), (2) basic model + Karnofsky Performance Status (≤50, 60–70, and 80+) (KPS model), and (3) basic model +16 binary indicators of geriatric assessment impairments (GA model). Cox regression was used to model one-year survival; c-indices and time-dependent c-statistics assessed model discrimination and stratified survival curves assessed model calibration. Results: We included 484 participants; mean age was 75; 48% had gastrointestinal or lung cancer. Overall, 43% of patients died within one year. Oncologists classified prognosis accurately for 55% of patients, overestimated for 35%, and underestimated for 10%. C-indices were 0.61 (basic model), 0.62 (KPS model), and 0.63 (GA model). The GA model was well-calibrated. Conclusions: The GA model showed moderate discrimination for survival, similar to alternative models, but calibration was improved. Further research is needed to optimize geriatric assessment-based prognostic models for use in older adults with advanced cancer
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV
The Lambda(b) differential production cross section and the cross section
ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum
pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7
TeV using data collected by the CMS experiment at the LHC. The measurements are
based on Lambda(b) decays reconstructed in the exclusive final state J/Psi
Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and
Lambda to proton pion, using a data sample corresponding to an integrated
luminosity of 1.9 inverse femtobarns. The product of the cross section times
the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls
faster than that of b mesons. The measured value of the cross section times the
branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06
+/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for
anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are
statistical and systematic, respectively.Comment: Submitted to Physics Letters
Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV
A search is presented for physics beyond the standard model (BSM) in final
states with a pair of opposite-sign isolated leptons accompanied by jets and
missing transverse energy. The search uses LHC data recorded at a
center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to
an integrated luminosity of approximately 5 inverse femtobarns. Two
complementary search strategies are employed. The first probes models with a
specific dilepton production mechanism that leads to a characteristic kinematic
edge in the dilepton mass distribution. The second strategy probes models of
dilepton production with heavy, colored objects that decay to final states
including invisible particles, leading to very large hadronic activity and
missing transverse energy. No evidence for an event yield in excess of the
standard model expectations is found. Upper limits on the BSM contributions to
the signal regions are deduced from the results, which are used to exclude a
region of the parameter space of the constrained minimal supersymmetric
extension of the standard model. Additional information related to detector
efficiencies and response is provided to allow testing specific models of BSM
physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV
Isolated photon production is measured in proton-proton and lead-lead
collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the
pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80
GeV with the CMS detector at the LHC. The measured ET spectra are found to be
in good agreement with next-to-leading-order perturbative QCD predictions. The
ratio of PbPb to pp isolated photon ET-differential yields, scaled by the
number of incoherent nucleon-nucleon collisions, is consistent with unity for
all PbPb reaction centralities.Comment: Submitted to Physics Letters
- …