26 research outputs found

    Targeting Glycosylation Pathways and the Cell Cycle: Sugar-Dependent Activity of Butyrate-Carbohydrate Cancer Prodrugs

    Get PDF
    SummaryShort-chain fatty acid (SCFA)-carbohydrate hybrid molecules that target both histone deacetylation and glycosylation pathways to achieve sugar-dependent activity against cancer cells are described in this article. Specifically, n-butyrate esters of N-acetyl-d-mannosamine (But4ManNAc, 1) induced apoptosis, whereas corresponding N-acetyl-d-glucosamine (But4GlcNAc, 2), d-mannose (But5Man, 3), or glycerol (tributryin, 4) derivatives only provided transient cell cycle arrest. Western blots, reporter gene assays, and cell cycle analysis established that n-butyrate, when delivered to cells via any carbohydrate scaffold, functioned as a histone deacetylase inhibitor (HDACi), upregulated p21WAF1/Cip1 expression, and inhibited proliferation. However, only 1, a compound that primed sialic acid biosynthesis and modulated the expression of a different set of genes compared to 3, ultimately killed the cells. These results demonstrate that the biological activity of butyrate can be tuned by sugars to improve its anticancer properties

    Macrophage-Derived Simian Immunodeficiency Virus Exhibits Enhanced Infectivity by Comparison with T-Cell-Derived Virus▿

    No full text
    Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infect and productively replicate in macrophages and T lymphocytes. Here, we show that SIV virions derived from macrophages have higher levels of infectivity than those derived from T cells. The lower infectivity of T-cell-derived viruses is influenced by the quantity or type of mannose residues on the virion. Our results demonstrate that the cellular origin of a virus is a major factor in viral infectivity. Cell-type-specific factors in viral infectivity, and organ-specific or disease stage-specific differences in cellular derivation of virions, can be critical in the pathogenesis of HIV and AIDS
    corecore