3,239 research outputs found
Text Type And Text Structure: An Analysis Of Three Secondary Informal Reading Inventories
Reading educators (Cheek & Cheek, 1983; Roe, Stoodt, & Burns, 1978) urge secondary teachers to use informal reading inventories (IRIs) in order to diagnose students\u27 reading problems and to place students in textbooks at appropriate levels to optimize instruction. Advice of this nature is surely well-intended; nevertheless, educators have reservations about the merits of available IRIs. For example, readability levels of IRI passages (Gerke, 1980), passage dependency of questions (Marr & Lyon, 1980; Tuinman, 1971), classification of questions (Shell & Hanna, 1981), scoring criteria (Bormuth, 1969), validity (Cooper, 1952; Powell, 1971), and allowable errors or miscues (Ekwall, 1971; Harris & Sipay, 1980) have been the focus of serious questions by reading researchers
Rotation-induced 3D vorticity in 4He superfluid films adsorbed on a porous glass
Detailed study of torsional oscillator experiments under steady rotation up
to 6.28 rad/sec is reported for a 4He superfluid monolayer film formed in 1
micrometer-pore diameter porous glass. We found a new dissipation peak with the
height being in proportion to the rotation speed, which is located to the lower
temperature than the vortex pair unbinding peak observed in the static state.
We propose that 3D coreless vortices ("pore vortices") appear under rotation to
explain this new peak. That is, the new peak originates from dissipation close
to the pore vortex lines, where large superfluid velocity shifts the vortex
pair unbinding dissipation to lower temperature. This explanation is confirmed
by observation of nonlinear effects at high oscillation amplitudes.Comment: 4pages, 5figure
Ligand Similarity Complements Sequence, Physical Interaction, and Co-Expression for Gene Function Prediction
The expansion of protein-ligand annotation databases has enabled large-scale networking of proteins by ligand similarity. These ligand-based protein networks, which implicitly predict the ability of neighboring proteins to bind related ligands, may complement biologically-oriented gene networks, which are used to predict functional or disease relevance. To quantify the degree to which such ligand-based protein associations might complement functional genomic associations, including sequence similarity, physical protein-protein interactions, co-expression, and disease gene annotations, we calculated a network based on the Similarity Ensemble Approach (SEA: sea.docking.org), where protein neighbors reflect the similarity of their ligands. We also measured the similarity with functional genomic networks over a common set of 1,131 genes, and found that the networks had only small overlaps, which were significant only due to the large scale of the data. Consistent with the view that the networks contain different information, combining them substantially improved Molecular Function prediction within GO (from AUROC~0.63-0.75 for the individual data modalities to AUROC~0.8 in the aggregate). We investigated the boost in guilt-by-association gene function prediction when the networks are combined and describe underlying properties that can be further exploited
Coaxial Jets with Disparate Viscosity: Mixing and Laminarization Characteristics
Mixing of fluids in a coaxial jet is studied under four distinct viscosity ratios, m = 1, 10, 20 and 40, using highly resolved large-eddy simulations (LES), particle image velocimetry and planar laser-induced fluorescence. The accuracy of predictions is tested against data obtained by the simultaneous experimental measurements of velocity and concentration fields. For the highest and lowest viscosity ratios, standard RANS models with unclosed terms pertaining to viscosity variations are employed. We show that the standard Reynolds-averaged Navier-Stokes (RANS) approach with no explicit modelling for variable-viscosity terms is not applicable whereas dynamic LES models provide high-quality agreement with the measurements. To identify the underlying mixing physics and sources of discrepancy in RANS predictions, two distinct mixing modes are defined based on the viscosity ratio. Then, for each mode, the evolution of mixing structures, momentum budget analysis with emphasis on variable-viscosity terms, analysis of the turbulent activity and decay of turbulence are investigated using highly resolved LES data. The mixing dynamics is found to be quite distinct in each mixing mode. Variable viscosity manifests multiple effects that are working against each other. Viscosity gradients induce additional instabilities while increasing overall viscosity decreases the effective Reynolds number leading to laminarization of the turbulent jet, explaining the lack of dispersion and turbulent diffusion. Momentum budget analysis reveals that variable-viscosity terms are significant to be neglected. The scaling of the energy spectrum cascade suggests that in the TLL mode the unsteady laminar shedding is responsible for the eddies observed
Search for supersolidity in 4He in low-frequency sound experiments
We present results of the search for supersolid 4He using low-frequency,
low-level mechanical excitation of a solid sample grown and cooled at fixed
volume. We have observed low frequency non-linear resonances that constitute
anomalous features. These features, which appear below about 0.8 K, are absent
in 3He. The frequency, the amplitude at which the nonlinearity sets in, and the
upper temperature limit of existence of these resonances depend markedly on the
sample history.Comment: Submitted to the Quantum Fluids and Solids Conf. Aug. 2006 Kyot
A Qualitative Case Study of an Ultra-Brief Trait Emotional Intelligence Intervention for University Student Leaders
Emotional intelligence gained interest in the early 1990s from researchers in hopes of assessing how understanding and developing emotions can help individuals be “healthy, rich, successful, loved, and happy” (Mayer et al., 2001, p. xi). Because of the expanded interest, increasing implications began occurring at the postsecondary level of education (Petrides et al., 2018). Trait emotional intelligence focuses on perceptions of oneself and others, illustrating how we regulate our emotions and recognize them in others. This qualitative study aimed to explore the impact of an ultra-brief intervention on the trait emotional intelligence development of university student leaders and how they perceived the effectiveness of the intervention. The study also looked to find how students specifically used the sociability factor in their roles as student leaders. The researchers conducted interviews followed by thematic analysis to reveal reoccurring codes, themes, and patterns that emerged from the data set. The findings suggest that students perceive the ultra-brief intervention as effective while engaging elements of the sociability factor of trait emotional intelligence
Characterizing correlations of flow oscillations at bottlenecks
"Oscillations" occur in quite different kinds of many-particle-systems when
two groups of particles with different directions of motion meet or intersect
at a certain spot. We present a model of pedestrian motion that is able to
reproduce oscillations with different characteristics. The Wald-Wolfowitz test
and Gillis' correlated random walk are shown to hold observables that can be
used to characterize different kinds of oscillations
New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission
Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both
calculable from first principles using various theoretical approaches and of
interest for the understanding of a wide range of questions in many body
physics. Unfortunately, the pair correlation function inferred from
neutron scattering measurements of the differential cross section from different measurements reported in the literature are
inconsistent. We have measured the energy dependence of the total cross section
and the scattering cross section for slow neutrons with energies between
0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K (which is dominated by the
parahydrogen component) using neutron transmission measurements on the hydrogen
target of the NPDGamma collaboration at the Spallation Neutron Source at Oak
Ridge National Laboratory. The relationship between the neutron transmission
measurement we perform and the total cross section is unambiguous, and the
energy range accesses length scales where the pair correlation function is
rapidly varying. At 1~meV our measurement is a factor of 3 below the data from
previous work. We present evidence that these previous measurements of the
hydrogen cross section, which assumed that the equilibrium value for the ratio
of orthohydrogen and parahydrogen has been reached in the target liquid, were
in fact contaminated with an extra non-equilibrium component of orthohydrogen.
Liquid parahydrogen is also a widely-used neutron moderator medium, and an
accurate knowledge of its slow neutron cross section is essential for the
design and optimization of intense slow neutron sources. We describe our
measurements and compare them with previous work.Comment: Edited for submission to Physical Review
- …