24 research outputs found

    Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images

    Get PDF
    Fetal brain magnetic resonance imaging (MRI) is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG) feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development

    DiCyc: Deformation Invariant Cross-Domain Information Fusion for Medical Image Synthesis

    Get PDF
    Cycle-consistent generative adversarial network (CycleGAN) has been widely used for cross-domain medical image synthesis tasks particularly due to its ability to deal with unpaired data. However, most CycleGAN-based synthesis methods cannot achieve good alignment between the synthesized images and data from the source domain, even with additional image alignment losses. This is because the CycleGAN generator network can encode the relative deformations and noises associated to different domains. This can be detrimental for the downstream applications that rely on the synthesized images, such as generating pseudo-CT for PET-MR attenuation correction. In this paper, we present a deformation invariant cycle-consistency model that can filter out these domain-specific deformation. The deformation is globally parameterized by thin-plate-spline (TPS), and locally learned by modified deformable convolutional layers. Robustness to domain-specific deformations has been evaluated through experiments on multi-sequence brain MR data and multi-modality abdominal CT and MR data. Experiment results demonstrated that our method can achieve better alignment between the source and target data while maintaining superior image quality of signal compared to several state-of-the-art CycleGAN-based methods

    Cardiac Energetics Before, During, and After Anthracycline-Based Chemotherapy in Breast Cancer Patients Using 31 P Magnetic Resonance Spectroscopy: A Pilot Study

    Get PDF
    Purpose: To explore the utility of phosphorus magnetic resonance spectroscopy (31P MRS) in identifying anthracycline-induced cardiac toxicity in patients with breast cancer. Methods: Twenty patients with newly diagnosed breast cancer receiving anthracycline-based chemotherapy had cardiac magnetic resonance assessment of left ventricular ejection fraction (LVEF) and 31P MRS to determine myocardial Phosphocreatine/Adenosine Triphosphate Ratio (PCr/ATP) at three time points: pre-, mid-, and end-chemotherapy. Plasma high sensitivity cardiac troponin-I (cTn-I) tests and electrocardiograms were also performed at these same time points. Results: Phosphocreatine/Adenosine Triphosphate did not change significantly between pre- and mid-chemo (2.16 ± 0.46 vs. 2.00 ± 0.56, p = 0.80) and pre- and end-chemo (2.16 ± 0.46 vs. 2.17 ± 0.86, p = 0.99). Mean LVEF reduced significantly by 5.1% between pre- and end-chemo (61.4 ± 4.4 vs. 56.3 ± 8.1 %, p = 0.02). Change in PCr/ATP ratios from pre- to end-chemo correlated inversely with changes in LVEF over the same period (r = −0.65, p = 0.006). Plasma cTn-I increased progressively during chemotherapy from pre- to mid-chemo (1.35 ± 0.81 to 4.40 ± 2.64 ng/L; p = 0.01) and from mid- to end-chemo (4.40 ± 2.64 to 18.33 ± 13.23 ng/L; p = 0.001). Conclusions: In this small cohort pilot study, we did not observe a clear change in mean PCr/ATP values during chemotherapy despite evidence of increased plasma cardiac biomarkers and reduced LVEF. Future similar studies should be adequately powered to take account of patient drop-out and variable changes in PCr/ATP and could include T1 and T2 mapping

    Assessment of Haemodynamic Response to Nonselective Beta-Blockers in Portal Hypertension by Phase-Contrast Magnetic Resonance Angiography

    Get PDF
    A significant unmet need exists for accurate, reproducible, noninvasive diagnostic tools to assess and monitor portal hypertension (PHT). We report the first use of quantitative MRI markers for the haemodynamic assessment of nonselective beta-blockers (NSBB) in PHT. In a randomized parallel feasibility study in 22 adult patients with PHT and a clinical indication for NSBB, we acquired haemodynamic data at baseline and after 4 weeks of NSBB (propranolol or carvedilol) using phase-contrast MR angiography (PC-MRA) in selected intra-abdominal vessels. T1 mapping of liver and spleen was undertaken to assess changes in tissue composition. Target NSBB dose was achieved in 82%. There was a substantial reduction from baseline in mean average flow in the superior abdominal aorta after 4 weeks of NSBB therapy (4.49±0.98 versus 3.82±0.86 L/min, P=0.03) but there were no statistically significant differences in flow in any other vessels, even in patients with >25% decrease in heart rate (47% of patients). Mean percentage change in liver and spleen T1 following NSBB was small and highly variable. In conclusion, PC-MRA was able to detect reduction in cardiac output by NSBB but did not detect significant changes in visceral blood flow or T1. This trial was registered with the ISRCTN registry (ISRCTN98001632)
    corecore