63 research outputs found

    Global (in Time) Solutions to the 3D-Navier-Stokes Equations on R^3

    Full text link
    A well-known unsolved problem (in the classical theory of fluid mechanics) is to identify a set of initial velocities, which may depend on the viscosity, the body forces and possibly the boundary of the fluid that will allow global in time solutions to the three-dimensional Navier-Stokes equations. (These equations describe the time evolution of the fluid velocity and pressure of an incompressible viscous homogeneous Newtonian fluid in terms of a given initial velocity and given external body forces.) A related problem is to provide conditions under which we can be assured that the numerical approximation of these equations, used in a variety of fields from weather prediction to submarine design, have only one solution. In earlier papers, we solved this problem for a bounded domain. In this paper, we use an approach based on additional physical insight, that allows us to prove that there exists unique global in time solutions to the Navier-Stokes equations on R^3
    • …
    corecore