13 research outputs found

    Characterisation of paediatric brain tumours by their MRS metabolite profiles

    Get PDF
    1H‐magnetic resonance spectroscopy (MRS) has the potential to improve the noninvasive diagnostic accuracy for paediatric brain tumours. However, studies analysing large, comprehensive, multicentre datasets are lacking, hindering translation to widespread clinical practice. Single‐voxel MRS (point‐resolved single‐voxel spectroscopy sequence, 1.5 T: echo time [TE] 23–37 ms/135–144 ms, repetition time [TR] 1500 ms; 3 T: TE 37–41 ms/135–144 ms, TR 2000 ms) was performed from 2003 to 2012 during routine magnetic resonance imaging for a suspected brain tumour on 340 children from five hospitals with 464 spectra being available for analysis and 281 meeting quality control. Mean spectra were generated for 13 tumour types. Mann–Whitney U‐tests and Kruskal–Wallis tests were used to compare mean metabolite concentrations. Receiver operator characteristic curves were used to determine the potential for individual metabolites to discriminate between specific tumour types. Principal component analysis followed by linear discriminant analysis was used to construct a classifier to discriminate the three main central nervous system tumour types in paediatrics. Mean concentrations of metabolites were shown to differ significantly between tumour types. Large variability existed across each tumour type, but individual metabolites were able to aid discrimination between some tumour types of importance. Complete metabolite profiles were found to be strongly characteristic of tumour type and, when combined with the machine learning methods, demonstrated a diagnostic accuracy of 93% for distinguishing between the three main tumour groups (medulloblastoma, pilocytic astrocytoma and ependymoma). The accuracy of this approach was similar even when data of marginal quality were included, greatly reducing the proportion of MRS excluded for poor quality. Children's brain tumours are strongly characterised by MRS metabolite profiles readily acquired during routine clinical practice, and this information can be used to support noninvasive diagnosis. This study provides both key evidence and an important resource for the future use of MRS in the diagnosis of children's brain tumours

    Ex vivo metabolite profiling of paediatric central nervous system tumours reveals prognostic markers.

    Get PDF
    Brain tumours are the most common cause of cancer death in children. Molecular studies have greatly improved our understanding of these tumours but tumour metabolism is underexplored. Metabolites measured in vivo have been reported as prognostic biomarkers of these tumours but analysis of surgically resected tumour tissue allows a more extensive set of metabolites to be measured aiding biomarker discovery and providing validation of in vivo findings. In this study, metabolites were quantified across a range of paediatric brain tumours using H-High-Resolution Magic Angle Spinning nuclear magnetic resonance spectroscopy (HR-MAS) and their prognostic potential investigated. HR-MAS was performed on pre-treatment frozen tumour tissue from a single centre. Univariate and multivariate Cox regression was used to examine the ability of metabolites to predict survival. The models were cross validated using C-indices and further validated by splitting the cohort into two. Higher concentrations of glutamine were predictive of a longer overall survival, whilst higher concentrations of lipids were predictive of a shorter overall survival. These metabolites were predictive independent of diagnosis, as demonstrated in multivariate Cox regression models. Whilst accurate quantification of metabolites such as glutamine in vivo is challenging, metabolites show promise as prognostic markers due to development of optimised detection methods and increasing use of 3 T clinical scanners

    Diagnostic accuracy and added value of qualitative radiological review of H-magnetic resonance spectroscopy in evaluation of childhood brain tumors.

    No full text
    Background H-magnetic resonance spectroscopy (MRS) facilitates noninvasive diagnosis of pediatric brain tumors by providing metabolite profiles. Prospective studies of diagnostic accuracy and comparisons with conventional MRI are lacking. We aimed to evaluate diagnostic accuracy of MRS for childhood brain tumors and determine added clinical value compared with conventional MRI. Methods Children presenting to a tertiary pediatric center with brain lesions from December 2015 through 2017 were included. MRI and single-voxel MRS were acquired on 52 tumors and sequentially interpreted by 3 radiologists, blinded to histopathology. Proportions of correct diagnoses and interrater agreement at each stage were compared. Cases were reviewed to determine added value of qualitative radiological review of MRS through increased certainty of correct diagnosis, reduced number of differentials, or diagnosis following spectroscopist evaluation. Final diagnosis was agreed by the tumor board at study end. Results Radiologists' principal MRI diagnosis was correct in 69%, increasing to 77% with MRS. MRI + MRS resulted in significantly more additional correct diagnoses than MRI alone ( = .035). There was a significant increase in interrater agreement when correct with MRS ( = .046). Added value following radiologist interpretation of MRS occurred in 73% of cases, increasing to 83% with additional spectroscopist review. First histopathological diagnosis was available a median of 9.5 days following imaging, with 25% of all patients managed without conclusive histopathology. Conclusions MRS can improve the accuracy of noninvasive diagnosis of pediatric brain tumors and add value in the diagnostic pathway. Incorporation into practice has the potential to facilitate early diagnosis, guide treatment planning, and improve patient care
    corecore