158 research outputs found
Heat kernel coefficients for chiral bag boundary conditions
We study the asymptotic expansion of the smeared L2-trace of fexp(-tP^2)
where P is an operator of Dirac type, f is an auxiliary smooth smearing
function which is used to localize the problem, and chiral bag boundary
conditions are imposed. Special case calculations, functorial methods and the
theory of zeta and eta invariants are used to obtain the boundary part of the
heat-kernel coefficients a1 and a2.Comment: Published in J. Phys. A38, 2259-2276 (2005). Record without file
already exists on the SLAC recor
Hawking Radiation and Ultraviolet Regulators
Polchinski has argued that the prediction of Hawking radiation must be
independent of the details of unknown high-energy physics because the
calculation may be performed using `nice slices', for which the adiabatic
theorem may be used. If this is so, then any calculation using a manifestly
covariant --- and so slice-independent --- ultraviolet regularization must
reproduce the standard Hawking result. We investigate the dependence of the
Hawking radiation on such a short-distance regulator by calculating it using a
Pauli--Villars regularization scheme. We find that the regulator scale,
, only contributes to the Hawking flux by an amount that is
exponentially small in the large variable {\Lambda}/{T_\ssh} \gg 1, where
T_\ssh is the Hawking temperature; in agreement with Polchinski's arguments.
We also solve a technical puzzle concerning the relation between the
short-distance singularities of the propagator and the Hawking effect.Comment: Tex, 11 pages, no figures, new references adde
Spectral asymptotics of Euclidean quantum gravity with diff-invariant boundary conditions
A general method is known to exist for studying Abelian and non-Abelian gauge
theories, as well as Euclidean quantum gravity, at one-loop level on manifolds
with boundary. In the latter case, boundary conditions on metric perturbations
h can be chosen to be completely invariant under infinitesimal diffeomorphisms,
to preserve the invariance group of the theory and BRST symmetry. In the de
Donder gauge, however, the resulting boundary-value problem for the Laplace
type operator acting on h is known to be self-adjoint but not strongly
elliptic. The latter is a technical condition ensuring that a unique smooth
solution of the boundary-value problem exists, which implies, in turn, that the
global heat-kernel asymptotics yielding one-loop divergences and one-loop
effective action actually exists. The present paper shows that, on the
Euclidean four-ball, only the scalar part of perturbative modes for quantum
gravity are affected by the lack of strong ellipticity. Further evidence for
lack of strong ellipticity, from an analytic point of view, is therefore
obtained. Interestingly, three sectors of the scalar-perturbation problem
remain elliptic, while lack of strong ellipticity is confined to the remaining
fourth sector. The integral representation of the resulting zeta-function
asymptotics is also obtained; this remains regular at the origin by virtue of a
spectral identity here obtained for the first time.Comment: 25 pages, Revtex-4. Misprints in Eqs. (5.11), (5.14), (5.16) have
been correcte
Poincare gauge invariance and gravitation in Minkowski spacetime
A formulation of Poincare symmetry as an inner symmetry of field theories
defined on a fixed Minkowski spacetime is given. Local P gauge transformations
and the corresponding covariant derivative with P gauge fields are introduced.
The renormalization properties of scalar, spinor and vector fields in P gauge
field backgrounds are determined. A minimal gauge field dynamics consistent
with the renormalization constraints is given.Comment: 36 pages, latex-fil
Spectral asymmetry for bag boundary conditions
We give an expression, in terms of boundary spectral functions, for the
spectral asymmetry of the Euclidean Dirac operator in two dimensions, when its
domain is determined by local boundary conditions, and the manifold is of
product type. As an application, we explicitly evaluate the asymmetry in the
case of a finite-length cylinder, and check that the outcome is consistent with
our general result. Finally, we study the asymmetry in a disk, which is a
non-product case, and propose an interpretation.Comment: Some minor changes. To appear in Journal of Physics A: Mathematical
and Genera
Casimir Energies for Spherically Symmetric Cavities
A general calculation of Casimir energies --in an arbitrary number of
dimensions-- for massless quantized fields in spherically symmetric cavities is
carried out. All the most common situations, including scalar and spinor
fields, the electromagnetic field, and various boundary conditions are treated
with care. The final results are given as analytical (closed) expressions in
terms of Barnes zeta functions. A direct, straightforward numerical evaluation
of the formulas is then performed, which yields highly accurate numbers of, in
principle, arbitrarily good precision.Comment: 18 pages, LaTeX, sub. Ann. Phy
Particle Physics from Almost Commutative Spacetimes
Our aim in this review article is to present the applications of Connes'
noncommutative geometry to elementary particle physics. Whereas the existing
literature is mostly focused on a mathematical audience, in this article we
introduce the ideas and concepts from noncommutative geometry using physicists'
terminology, gearing towards the predictions that can be derived from the
noncommutative description. Focusing on a light package of noncommutative
geometry (so-called 'almost commutative manifolds'), we shall introduce in
steps: electrodynamics, the electroweak model, culminating in the full Standard
Model. We hope that our approach helps in understanding the role noncommutative
geometry could play in describing particle physics models, eventually unifying
them with Einstein's (geometrical) theory of gravity.Comment: 104 pages, 5 figures, version 2 (minor changes and some additional
references
The hybrid spectral problem and Robin boundary conditions
The hybrid spectral problem where the field satisfies Dirichlet conditions
(D) on part of the boundary of the relevant domain and Neumann (N) on the
remainder is discussed in simple terms. A conjecture for the C_1 coefficient is
presented and the conformal determinant on a 2-disc, where the D and N regions
are semi-circles, is derived. Comments on higher coefficients are made.
A hemisphere hybrid problem is introduced that involves Robin boundary
conditions and leads to logarithmic terms in the heat--kernel expansion which
are evaluated explicitly.Comment: 24 pages. Typos and a few factors corrected. Minor comments added.
Substantial Robin additions. Substantial revisio
Pole structure of the Hamiltonian -function for a singular potential
We study the pole structure of the -function associated to the
Hamiltonian of a quantum mechanical particle living in the half-line
, subject to the singular potential . We show that
admits nontrivial self-adjoint extensions (SAE) in a given range of values
of the parameter . The -functions of these operators present poles
which depend on and, in general, do not coincide with half an integer (they
can even be irrational). The corresponding residues depend on the SAE
considered.Comment: 12 pages, 1 figure, RevTeX. References added. Version to appear in
Jour. Phys. A: Math. Ge
On anomalies in classical dynamical systems
The definition of "classical anomaly" is introduced. It describes the
situation in which a purely classical dynamical system which presents both a
lagrangian and a hamiltonian formulation admits symmetries of the action for
which the Noether conserved charges, endorsed with the Poisson bracket
structure, close an algebra which is just the centrally extended version of the
original symmetry algebra. The consistency conditions for this to occur are
derived. Explicit examples are given based on simple two-dimensional models.
Applications of the above scheme and lines of further investigations are
suggested.Comment: arXiv version is already officia
- …