7 research outputs found

    A Massive Renormalizable Abelian Gauge Theory in 2+1 Dimensions

    Get PDF
    The standard formulation of a massive Abelian vector field in 2+12+1 dimensions involves a Maxwell kinetic term plus a Chern-Simons mass term; in its place we consider a Chern-Simons kinetic term plus a Stuekelberg mass term. In this latter model, we still have a massive vector field, but now the interaction with a charged spinor field is renormalizable (as opposed to super renormalizable). By choosing an appropriate gauge fixing term, the Stuekelberg auxiliary scalar field decouples from the vector field. The one-loop spinor self energy is computed using operator regularization, a technique which respects the three dimensional character of the antisymmetric tensor ϵαβγ\epsilon_{\alpha\beta\gamma}. This method is used to evaluate the vector self energy to two-loop order; it is found to vanish showing that the beta function is zero to two-loop order. The canonical structure of the model is examined using the Dirac constraint formalism.Comment: LaTeX, 17 pages, expanded reference list and discussion of relationship to previous wor

    Large Mass Invariant Asymptotics of the Effective Action

    Get PDF
    We study the large mass asymptotics of the Dirac operator with a nondegenerate mass matrix m={diag}(m_1,m_2,m_3) in the presence of scalar and pseudoscalar background fields taking values in the Lie algebra of the U(3) group. The corresponding one-loop effective action is regularized by the Schwinger's proper-time technique. Using a well-known operator identity, we obtain a series representation for the heat kernel which differs from the standard proper-time expansion, if m_1\ne m_2\ne m_3. After integrating over the proper-time we use a new algorithm to resum the series. The invariant coefficients which define the asymptotics of the effective action are calculated up to the fourth order and compared with the related Seeley-DeWitt coefficients for the particular case of a degenerate mass matrix with m_1=m_2=m_3.Comment: 5 pages, revtex, no figure
    corecore