5 research outputs found

    Revealing the Unknown: Real-Time Recognition of Galápagos Snake Species Using Deep Learning

    Get PDF
    Real-time identification of wildlife is an upcoming and promising tool for the preservation of wildlife. In this research project, we aimed to use object detection and image classification for the racer snakes of the Galápagos Islands, Ecuador. The final target of this project was to build an artificial intelligence (AI) platform, in terms of a web or mobile application, which would serve as a real-time decision making and supporting mechanism for the visitors and park rangers of the Galápagos Islands, to correctly identify a snake species from the user’s uploaded image. Using the deep learning and machine learning algorithms and libraries, we modified and successfully implemented four region-based convolutional neural network (R-CNN) architectures (models for image classification): Inception V2, ResNet, MobileNet, and VGG16. Inception V2, ResNet and VGG16 reached an overall accuracy of 75%This article belongs to the Section Wildlif

    Revealing the Unknown: Real-Time Recognition of Galápagos Snake Species Using Deep Learning

    Get PDF
    Real-time identification of wildlife is an upcoming and promising tool for the preservation of wildlife. In this research project, we aimed to use object detection and image classification for the racer snakes of the Galápagos Islands, Ecuador. The final target of this project was to build an artificial intelligence (AI) platform, in terms of a web or mobile application, which would serve as a real-time decision making and supporting mechanism for the visitors and park rangers of the Galápagos Islands, to correctly identify a snake species from the user’s uploaded image. Using the deep learning and machine learning algorithms and libraries, we modified and successfully implemented four region-based convolutional neural network (R-CNN) architectures (models for image classification): Inception V2, ResNet, MobileNet, and VGG16. Inception V2, ResNet and VGG16 reached an overall accuracy of 75%This article belongs to the Section Wildlif

    Prediction of Hourly Effect of Land Use on Crime

    Get PDF
    Predicting the exact urban places where crime is most likely to occur is one of the greatest interests for Police Departments. Therefore, the goal of the research presented in this paper is to identify specific urban areas where a crime could happen in Manhattan, NY for every hour of a day. The outputs from this research are the following: (i) predicted land uses that generates the top three most committed crimes in Manhattan, by using machine learning (random forest and logistic regression), (ii) identifying the exact hours when most of the assaults are committed, together with hot spots during these hours, by applying time series and hot spot analysis, (iii) built hourly prediction models for assaults based on the land use, by deploying logistic regression. Assault, as a physical attack on someone, according to criminal law, is identified as the third most committed crime in Manhattan. Land use (residential, commercial, recreational, mixed use etc.) is assigned to every area or lot in Manhattan, determining the actual use or activities within each particular lot. While plotting assaults on the map for every hour, this investigation has identified that the hot spots where assaults occur were ‘moving’ and not confined to specific lots within Manhattan. This raises a number of questions: Why are hot spots of assaults not static in an urban environment? What makes them ‘move’—is it a particular urban pattern? Is the ‘movement’ of hot spots related to human activities during the day and night? Answering these questions helps to build the initial frame for assault prediction within every hour of a day. Knowing a specific land use vulnerability to assault during each exact hour can assist the police departments to allocate forces during those hours in risky areas. For the analysis, the study is using two datasets: a crime dataset with geographical locations of crime, date and time, and a geographic dataset about land uses with land use codes for every lot, each obtained from open databases. The study joins two datasets based on the spatial location and classifies data into 24 classes, based on the time range when the assault occurred. Machine learning methods reveal the effect of land uses on larceny, harassment and assault, the three most committed crimes in Manhattan. Finally, logistic regression provides hourly prediction models and unveils the type of land use where assaults could occur during each hour for both day and night

    Fermion-monopole system reexamined. IV

    No full text

    Reading the patterns in living cells —the physics of ca 2+

    No full text
    corecore