648 research outputs found
Hypoxia-inducible Factor-dependent Breast Cancer-mesenchymal Stem Cell Bidirectional Signaling Promotes Metastasis.
published_or_final_versio
Universal Behavior of Lyapunov Exponents in Unstable Systems
We calculate the Lyapunov exponents in a classical molecular dynamics
framework. The system is composed of few hundreds particles interacting either
through Yukawa (Nuclear) or Slater-Kirkwood (Atomic) forces. The forces are
chosen to give an Equation of State that resembles the nuclear and the atomic
Equation Of State respectively near the critical point for liquid-gas
phase transition. We find the largest fluctuations for an initial "critical
temperature". The largest Lyapunov exponents are always positive and
can be very well fitted near this "critical temperature" with a functional form
, where the exponent is
independent of the system and mass number. At smaller temperatures we find that
, a universal behavior characteristic of an order
to chaos transition.Comment: 11 pages, RevTeX, 3 figures not included available upon reques
Exactly Solvable Models: The Road Towards a Rigorous Treatment of Phase Transitions in Finite Systems
We discuss exact analytical solutions of a variety of statistical models
recently obtained for finite systems by a novel powerful mathematical method,
the Laplace-Fourier transform. Among them are a constrained version of the
statistical multifragmentation model, the Gas of Bags Model and the Hills and
Dales Model of surface partition. Thus, the Laplace-Fourier transform allows
one to study the nuclear matter equation of state, the equation of state of
hadronic and quark gluon matter and surface partitions on the same footing. A
complete analysis of the isobaric partition singularities of these models is
done for finite systems. The developed formalism allows us, for the first time,
to exactly define the finite volume analogs of gaseous, liquid and mixed phases
of these models from the first principles of statistical mechanics and
demonstrate the pitfalls of earlier works. The found solutions may be used for
building up a new theoretical apparatus to rigorously study phase transitions
in finite systems. The strategic directions of future research opened by these
exact results are also discussed.Comment: Contribution to the ``World Consensus Initiative III, Texas A & M
University, College Station, Texas, USA, February 11-17, 2005, 21
A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML
The clinical benefit of adding FMS-like tyrosine kinase-3 (FLT3)-directed small molecule therapy to standard first-line treatment of acute myeloid leukemia (AML) has not yet been established. As part of the UK AML15 and AML17 trials, patients with previously untreated AML and confirmed FLT3-activating mutations, mostly younger than 60 years, were randomly assigned either to receive oral lestaurtinib (CEP701) or not after each of 4 cycles of induction and consolidation chemotherapy. Lestaurtinib was commenced 2 days after completing chemotherapy and administered in cycles of up to 28 days. The trials ran consecutively. Primary endpoints were overall survival in AML15 and relapse-free survival in AML17; outcome data were meta-analyzed. Five hundred patients were randomly assigned between lestaurtinib and control: 74% had FLT3-internal tandem duplication mutations, 23% FLT3–tyrosine kinase domain point mutations, and 2% both types. No significant differences were seen in either 5-year overall survival (lestaurtinib 46% vs control 45%; hazard ratio, 0.90; 95% CI 0.70-1.15; P = .3) or 5-year relapse-free survival (40% vs 36%; hazard ratio, 0.88; 95% CI 0.69-1.12; P = .3). Exploratory subgroup analysis suggested survival benefit with lestaurtinib in patients receiving concomitant azole antifungal prophylaxis and gemtuzumab ozogamicin with the first course of chemotherapy. Correlative studies included analysis of in vivo FLT3 inhibition by plasma inhibitory activity assay and indicated improved overall survival and significantly reduced rates of relapse in lestaurtinib-treated patients who achieved sustained greater than 85% FLT3 inhibition. In conclusion, combining lestaurtinib with intensive chemotherapy proved feasible in younger patients with newly diagnosed FLT3-mutated AML, but yielded no overall clinical benefit. The improved clinical outcomes seen in patients achieving sustained FLT3 inhibition encourage continued evaluation of FLT3-directed therapy alongside front-line AML treatment. The UK AML15 and AML17 trials are registered at www.isrctn.com/ISRCTN17161961 and www.isrctn.com/ISRCTN55675535 respectively
Quantum gate algorithm for reference-guided DNA sequence alignment
Reference-guided DNA sequencing and alignment is an important process in
computational molecular biology. The amount of DNA data grows very fast, and
many new genomes are waiting to be sequenced while millions of private genomes
need to be re-sequenced. Each human genome has 3.2 B base pairs, and each one
could be stored with 2 bits of information, so one human genome would take 6.4
B bits or about 760 MB of storage (National Institute of General Medical
Sciences). Today most powerful tensor processing units cannot handle the volume
of DNA data necessitating a major leap in computing power. It is, therefore,
important to investigate the usefulness of quantum computers in genomic data
analysis, especially in DNA sequence alignment. Quantum computers are expected
to be involved in DNA sequencing, initially as parts of classical systems,
acting as quantum accelerators. The number of available qubits is increasing
annually, and future quantum computers could conduct DNA sequencing, taking the
place of classical computing systems. We present a novel quantum algorithm for
reference-guided DNA sequence alignment modeled with gate-based quantum
computing. The algorithm is scalable, can be integrated into existing classical
DNA sequencing systems and is intentionally structured to limit computational
errors. The quantum algorithm has been tested using the quantum processing
units and simulators provided by IBM Quantum, and its correctness has been
confirmed.Comment: 19 pages, 13 figure
Studies in the statistical and thermal properties of hadronic matter under some extreme conditions
The thermal and statistical properties of hadronic matter under some extreme
conditions are investigated using an exactly solvable canonical ensemble model.
A unified model describing both the fragmentation of nuclei and the thermal
properties of hadronic matter is developed. Simple expressions are obtained for
quantities such as the hadronic equation of state, specific heat,
compressibility, entropy, and excitation energy as a function of temperature
and density. These expressions encompass the fermionic aspect of nucleons, such
as degeneracy pressure and Fermi energy at low temperatures and the ideal gas
laws at high temperatures and low density. Expressions are developed which
connect these two extremes with behavior that resembles an ideal Bose gas with
its associated Bose condensation. In the thermodynamic limit, an infinite
cluster exists below a certain critical condition in a manner similar to the
sudden appearance of the infinite cluster in percolation theory. The importance
of multiplicity fluctuations is discussed and some recent data from the EOS
collaboration on critical point behavior of nuclei can be accounted for using
simple expressions obtained from the model.Comment: 22 pages, revtex, includes 6 figures, submitted to Phys. Rev.
Heated nuclear matter, condensation phenomena and the hadronic equation of state
The thermodynamic properties of heated nuclear matter are explored using an
exactly solvable canonical ensemble model. This model reduces to the results of
an ideal Fermi gas at low temperatures. At higher temperatures, the
fragmentation of the nuclear matter into clusters of nucleons leads to features
that resemble a Bose gas. Some parallels of this model with the phenomena of
Bose condensation and with percolation phenomena are discussed. A simple
expression for the hadronic equation of state is obtained from the model.Comment: 12 pages, revtex, 1 ps file appended (figure 1
Event-by-Event Fluctuations in Heavy Ion Collisions and the QCD Critical Point
The event-by-event fluctuations of suitably chosen observables in heavy ion
collisions at SPS, RHIC and LHC can tell us about the thermodynamic properties
of the hadronic system at freeze-out. By studying these fluctuations as a
function of varying control parameters, it is possible to learn much about the
phase diagram of QCD. As a timely example, we stress the methods by which
present experiments at the CERN SPS can locate the second-order critical
endpoint of the first-order transition between quark-gluon plasma and hadron
matter. Those event-by-event signatures which are characteristic of freeze-out
in the vicinity of the critical point will exhibit nonmonotonic dependence on
control parameters. We focus on observables constructed from the multiplicity
and transverse momenta of charged pions. We first consider how the
event-by-event fluctuations of such observables are affected by Bose-Einstein
correlations, by resonances which decay after freeze-out and by fluctuations in
the transverse flow velocity. We compare our thermodynamic predictions for such
noncritical event-by-event fluctuations with NA49 data, finding broad
agreement. We then focus on effects due to thermal contact between the observed
pions and a heat bath with a given (possibly singular) specific heat, and due
to the direct coupling between the critical fluctuations of the sigma field and
the observed pions. We also discuss the effect of the pions produced in the
decay of sigma particles just above threshold after freeze-out on the inclusive
pion spectrum and on multiplicity fluctuations. We estimate the size of these
nonmonotonic effects which appear near the critical point, including
restrictions imposed by finite size and finite time, and conclude that they
should be easily observable.Comment: 58 pages, 2 figures; to appear in Phys. Rev.
- …