85 research outputs found
Stark deceleration of CaF molecules in strong- and weak-field seeking states
We report the Stark deceleration of CaF molecules in the strong-field seeking
ground state and in a weak-field seeking component of a rotationally-excited
state. We use two types of decelerator, a conventional Stark decelerator for
the weak-field seekers, and an alternating gradient decelerator for the
strong-field seekers, and we compare their relative merits. We also consider
the application of laser cooling to increase the phase-space density of
decelerated molecules.Comment: 10 pages, 8 figure
Cold and Slow Molecular Beam
Employing a two-stage cryogenic buffer gas cell, we produce a cold,
hydrodynamically extracted beam of calcium monohydride molecules with a near
effusive velocity distribution. Beam dynamics, thermalization and slowing are
studied using laser spectroscopy. The key to this hybrid, effusive-like beam
source is a "slowing cell" placed immediately after a hydrodynamic, cryogenic
source [Patterson et al., J. Chem. Phys., 2007, 126, 154307]. The resulting CaH
beams are created in two regimes. One modestly boosted beam has a forward
velocity of vf = 65 m/s, a narrow velocity spread, and a flux of 10^9 molecules
per pulse. The other has the slowest forward velocity of vf = 40 m/s, a
longitudinal temperature of 3.6 K, and a flux of 5x10^8 molecules per pulse
Quasi-classical rate coefficient calculations for the rotational (de)excitation of H2O by H2
The interpretation of water line emission from existing observations and
future HIFI/Herschel data requires a detailed knowledge of collisional rate
coefficients. Among all relevant collisional mechanisms, the rotational
(de)excitation of H2O by H2 molecules is the process of most interest in
interstellar space. To determine rate coefficients for rotational de-excitation
among the lowest 45 para and 45 ortho rotational levels of H2O colliding with
both para and ortho-H2 in the temperature range 20-2000 K. Rate coefficients
are calculated on a recent high-accuracy H2O-H2 potential energy surface using
quasi-classical trajectory calculations. Trajectories are sampled by a
canonical Monte-Carlo procedure. H2 molecules are assumed to be rotationally
thermalized at the kinetic temperature. By comparison with quantum calculations
available for low lying levels, classical rates are found to be accurate within
a factor of 1-3 for the dominant transitions, that is those with rates larger
than a few 10^{-12}cm^{3}s^{-1}. Large velocity gradient modelling shows that
the new rates have a significant impact on emission line fluxes and that they
should be adopted in any detailed population model of water in warm and hot
environments.Comment: 8 pages, 2 figures, 1 table (the online material (4 tables) can be
obtained upon request to [email protected]
On the role of the magnetic dipolar interaction in cold and ultracold collisions: Numerical and analytical results for NH() + NH()
We present a detailed analysis of the role of the magnetic dipole-dipole
interaction in cold and ultracold collisions. We focus on collisions between
magnetically trapped NH molecules, but the theory is general for any two
paramagnetic species for which the electronic spin and its space-fixed
projection are (approximately) good quantum numbers. It is shown that dipolar
spin relaxation is directly associated with magnetic-dipole induced avoided
crossings that occur between different adiabatic potential curves. For a given
collision energy and magnetic field strength, the cross-section contributions
from different scattering channels depend strongly on whether or not the
corresponding avoided crossings are energetically accessible. We find that the
crossings become lower in energy as the magnetic field decreases, so that
higher partial-wave scattering becomes increasingly important \textit{below} a
certain magnetic field strength. In addition, we derive analytical
cross-section expressions for dipolar spin relaxation based on the Born
approximation and distorted-wave Born approximation. The validity regions of
these analytical expressions are determined by comparison with the NH + NH
cross sections obtained from full coupled-channel calculations. We find that
the Born approximation is accurate over a wide range of energies and field
strengths, but breaks down at high energies and high magnetic fields. The
analytical distorted-wave Born approximation gives more accurate results in the
case of s-wave scattering, but shows some significant discrepancies for the
higher partial-wave channels. We thus conclude that the Born approximation
gives generally more meaningful results than the distorted-wave Born
approximation at the collision energies and fields considered in this work.Comment: Accepted by Eur. Phys. J. D for publication in Special Issue on Cold
Quantum Matter - Achievements and Prospects (2011
Deceleration and trapping of heavy diatomic molecules using a ring-decelerator
We present an analysis of the deceleration and trapping of heavy diatomic
molecules in low-field seeking states by a moving electric potential. This
moving potential is created by a 'ring-decelerator', which consists of a series
of ring-shaped electrodes to which oscillating high voltages are applied.
Particle trajectory simulations have been used to analyze the deceleration and
trapping efficiency for a group of molecules that is of special interest for
precision measurements of fundamental discrete symmetries. For the typical case
of the SrF molecule in the (N,M) = (2, 0) state, the ring-decelerator is shown
to outperform traditional and alternate-gradient Stark decelerators by at least
an order of magnitude. If further cooled by a stage of laser cooling, the
decelerated molecules allow for a sensitivity gain in a parity violation
measurement, compared to a cryogenic molecular beam experiment, of almost two
orders of magnitude
Anatomical position of the mandibular condyle after open versus closed treatment of unilateral fractures: A three-dimensional analysis
This study aimed to compare open and closed treatment for unilateral mandibular condyle neck and base fractures by final three-dimensional (3D) condylar position at 6 months follow-up. 3D position was associated with mandibular functioning and pain. A total of 21 patients received open (n = 11) or closed (n = 10) treatment. 3D positions were assessed on cone-beam computed tomography scans. Volume differences, root mean square, translations, and rotations were obtained related to the pursued anatomical position and compared between treatment groups by the Mann-Whitney U test. The 3D position parameters were associated with the maximum interincisal opening (MIO), mixing ability test (MAT), Mandibular Function Impairment Questionnaire (MFIQ), and pain based on Spearman correlation coefficients (rs). Translation in the medial-lateral direction was smaller after open treatment (P = 0.014). 3D position was not associated with the MAT; however, worse position was associated with a smaller MIO. A larger pitch rotation was associated with a worse MFIQ (rs = 0.499, P = 0.025). Volume reduction of the affected condyle was associated with more pain (rs = −0.503, P = 0.020). In conclusion, after unilateral condylar fractures, worse 3D position is associated with a smaller mouth opening and worse patient-reported outcomes. This is independent of the chosen treatment, despite a better anatomical reduction after open treatment
Cold heteromolecular dipolar collisions
We present the first experimental observation of cold collisions between two
different species of neutral polar molecules, each prepared in a single
internal quantum state. Combining for the first time the techniques of Stark
deceleration, magnetic trapping, and cryogenic buffer gas cooling allows the
enhancement of molecular interaction time by 10. This has enabled an
absolute measurement of the total trap loss cross sections between OH and
ND at a mean collision energy of 3.6 cm (5 K). Due to the dipolar
interaction, the total cross section increases upon application of an external
polarizing electric field. Cross sections computed from \emph{ab initio}
potential energy surfaces are in excellent agreement with the measured value at
zero external electric field. The theory presented here represents the first
such analysis of collisions between a radical and a closed-shell
polyatomic molecule.Comment: 7 pages, 5 figure
Bariatric surgery improves postprandial VLDL kinetics and restores insulin mediated regulation of hepatic VLDL production
Dyslipidemia in obesity results from excessive production and impaired clearance of triglyceride-rich (TG-rich) lipoproteins, which are particularly pronounced in the postprandial state. Here, we investigated the impact of Roux-en-Y gastric bypass (RYGB) surgery on postprandial VLDL1 and VLDL2 apoB and TG kinetics and their relationship with insulin-responsiveness indices. Morbidly obese patients without diabetes who were scheduled for RYGB surgery (n = 24) underwent a lipoprotein kinetics study during a mixed-meal test and a hyperinsulinemic-euglycemic clamp study before the surgery and 1 year later. A physiologically based computational model was developed to investigate the impact of RYGB surgery and plasma insulin on postprandial VLDL kinetics. After the surgery, VLDL1 apoB and TG production rates were significantly decreased, whereas VLDL2 apoB and TG production rates remained unchanged. The TG catabolic rate was increased in both VLDL1 and VLDL2 fractions, but only the VLDL2 apoB catabolic rate tended to increase. Furthermore, postsurgery VLDL1 apoB and TG production rates, but not those of VLDL2, were positively correlated with insulin resistance. Insulin-mediated stimulation of peripheral lipoprotein lipolysis was also improved after the surgery. In summary, RYGB resulted in reduced hepatic VLDL1 production that correlated with reduced insulin resistance, elevated VLDL2 clearance, and improved insulin sensitivity in lipoprotein lipolysis pathways.</p
The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules
Beams of atoms and molecules are stalwart tools for spectroscopy and studies
of collisional processes. The supersonic expansion technique can create cold
beams of many species of atoms and molecules. However, the resulting beam is
typically moving at a speed of 300-600 m/s in the lab frame, and for a large
class of species has insufficient flux (i.e. brightness) for important
applications. In contrast, buffer gas beams can be a superior method in many
cases, producing cold and relatively slow molecules in the lab frame with high
brightness and great versatility. There are basic differences between
supersonic and buffer gas cooled beams regarding particular technological
advantages and constraints. At present, it is clear that not all of the
possible variations on the buffer gas method have been studied. In this review,
we will present a survey of the current state of the art in buffer gas beams,
and explore some of the possible future directions that these new methods might
take
Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects
Background: Gut microbiota-derived short-chain fatty acids (SCFAs) have been associated with beneficial metabolic effects. However, the direct effect of oral butyrate on metabolic parameters in humans has never been studied. In this first in men pilot study, we thus treated both lean and metabolic syndrome male subjects with oral sodium butyrate and investigated the effect on metabolism. Methods: Healthy lean males (n = 9) and metabolic syndrome males (n = 10) were treated with oral 4 g of sodium butyrate daily for 4 weeks. Before and after treatment, insulin sensitivity was determined by a two-step hyperinsulinemic euglycemic clamp using [6,6-2H2]-glucose. Brown adipose tissue (BAT) uptake of glucose was visualized using 18F-FDG PET-CT. Fecal SCFA and bile acid concentrations as well as microbiota composition were determined before and after treatment. Results: Oral butyrate had no effect on plasma and fecal butyrate levels after treatment, but did alter other SCFAs in both plasma and feces. Moreover, only in healthy lean subjects a significant improvement was observed in both peripheral (median Rd: from 71 to 82 μmol/kg min, p < 0.05) and hepatic insulin sensitivity (EGP suppression from 75 to 82% p < 0.05). Although BAT activity was significantly higher at baseline in lean (SUVmax: 12.4 ± 1.8) compared with metabolic syndrome subjects (SUVmax: 0.3 ± 0.8, p < 0.01), no significant effect following butyrate treatment on BAT was observed in either group (SUVmax lean to 13.3 ± 2.4 versus metabolic syndrome subjects to 1.2 ± 4.1). Conclusions: Oral butyrate treatment beneficially affects glucose metabolism in lean but not metabolic syndrome subjects, presumably due to an altered SCFA handling in insulin-resistant subjects. Although preliminary, these first in men findings argue against oral butyrate supplementation as treatment for glucose regulation in human subjects with type 2 diabetes mellitus
- …