4 research outputs found

    Population-based estimates of overtreatment with adjuvant systemic therapy in early breast cancer patients with data from the Netherlands and the USA

    Get PDF
    Purpose: Although adjuvant systemic therapy (AST) helps increase breast cancer-specific survival (BCSS), there is a growing concern for overtreatment. By estimating the expected BCSS of AST using PREDICT, this study aims to quantify the number of patients treated with AST without benefit to provide estimates of overtreatment. Methods: Data of all non-metastatic unilateral breast cancer patients diagnosed in 2015 were retrieved from cancer registries from The Netherlands and the USA. The PREDICT tool was used to estimate AST survival benefit. Overtreatment was defined as the proportion of patients that would have survived regardless of or died despite AST within 10 years. Three scenarios were evaluated: actual treatment, and recommendations by the Dutch or USA guidelines. Results: 59.5% of Dutch patients were treated with AST. 6.4% (interquartile interval [IQI] = 2.5, 8.2%) was expected to survive at least 10 years due to AST, leaving 93.6% (IQI = 91.8, 97.5%) without AST benefit (overtreatment). The lowest expected amount of overtreatment was in the targeted and chemotherapy subgroup, with 86.5% (IQI = 83.4, 89.6%) overtreatment, and highest in the only endocrine treatment subgroup, with 96.7% (IQI = 96.0, 98.1%) overtreatment. Similar results were obtained using data from the USA, and guideline recommendations. Conclusion: Based on PREDICT, AST prevents 10-year breast cancer death in 6.4% of the patients treated with AST. Consequently, AST yields no survival benefit to many treated patients. Especially improved personalization of endocrine therapy is relevant, as this therapy is widely used and is associated with the highest amount of overtreatment

    Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci

    No full text
    To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom similar to 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with similar to 2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 x 10(-9)) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p < 2.4 x 10(-6)). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 x 10(-7)) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 x 10(-15)). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 x 10(-8)). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups
    corecore