5 research outputs found

    Critical analysis of self-doping and water-soluble n-type organic semiconductors: structures and mechanisms

    Get PDF
    Self-doping organic semiconductors provide a promising route to avoid instabilities and morphological issues associated with molecular n-type dopants. Structural characterization of a naphthalenetetracarboxylic diimide (NDI) semiconductor covalently bound to an ammonium hydroxide group is presented. The dopant precursor was found to be the product of an unexpected base catalyzed hydrolysis, which was reversible. The reversible hydrolysis had profound consequences on the chemical composition, morphology, and electronic performance of the doped films. In addition, we investigated the degradation mechanism of the quaternary ammonium group and the subsequent doping of NDI. These findings reveal that the products of more than one chemical reaction during processing of films must be considered when utilizing this promising class of water-soluble semiconductors

    Peculiar transient behaviors of organic electrochemical transistors governed by ion injection directionality

    Get PDF
    Abstract Despite the growing interest in dynamic behaviors at the frequency domain, there exist very few studies on molecular orientation-dependent transient responses of organic mixed ionic–electronic conductors. In this research, we investigated the effect of ion injection directionality on transient electrochemical transistor behaviors by developing a model mixed conductor system. Two polymers with similar electrical, ionic, and electrochemical characteristics but distinct backbone planarities and molecular orientations were successfully synthesized by varying the co-monomer unit (2,2’-bithiophene or phenylene) in conjunction with a novel 1,4-dithienylphenylene-based monomer. The comprehensive electrochemical analysis suggests that the molecular orientation affects the length of the ion-drift pathway, which is directly correlated with ion mobility, resulting in peculiar OECT transient responses. These results provide the general insight into molecular orientation-dependent ion movement characteristics as well as high-performance device design principles with fine-tuned transient responses
    corecore