3 research outputs found

    The Rotation of M Dwarfs Observed by the Apache Point Galactic Evolution Experiment

    Full text link
    We present the results of a spectroscopic analysis of rotational velocities in 714 M dwarf stars observed by the SDSS III Apache Point Galactic Evolution Experiment (APOGEE) survey. We use a template fitting technique to estimate vsiniv\sin{i} while simultaneously estimating logg\log{g}, [M/H][\text{M}/\text{H}], and TeffT_{\text{eff}}. We conservatively estimate that our detection limit is 8 km s1^{-1}. We compare our results to M dwarf rotation studies in the literature based on both spectroscopic and photometric measurements. Like other authors, we find an increase in the fraction of rapid rotators with decreasing stellar temperature, exemplified by a sharp increase in rotation near the M44 transition to fully convective stellar interiors, which is consistent with the hypothesis that fully convective stars are unable to shed angular momentum as efficiently as those with radiative cores. We compare a sample of targets observed both by APOGEE and the MEarth transiting planet survey and find no cases were the measured vsiniv\sin{i} and rotation period are physically inconsistent, requiring sini>1\sin{i}>1. We compare our spectroscopic results to the fraction of rotators inferred from photometric surveys and find that while the results are broadly consistent, the photometric surveys exhibit a smaller fraction of rotators beyond the M44 transition by a factor of 2\sim 2. We discuss possible reasons for this discrepancy. Given our detection limit, our results are consistent with a bi-modal distribution in rotation that is seen in photometric surveys.Comment: 31 pages, 11 figures, 4 tables. Accepted for publication by A
    corecore