64 research outputs found

    Litfire user's guide

    Get PDF

    Litfire user's guide

    Get PDF

    Digital native students using nutritional apps: are they more adherent to a mediterranean diet model? Results from the good APPetite survey

    Get PDF
    Reading and understanding food labels are crucial steps in healthy dietary choices. Nutritionrelated applications (n-apps) have increased in the recent years and the aim of this study was to assess the use and the perception of n-apps among a population of university students, also investigating the attitude and relationship with reading food labels and adherence to the Mediterranean diet (Medi-Lite score). In 2023, 316 students, mainly attending the courses of Medicine, Pharmacy and Dietetics at the University of Brescia, Italy, completed an anonymous and specifically designed survey. 33.9% of the students stated that they use or have used n-apps. The most used apps were Yuka, MyFitnessPal, Fat Secret and Yazio, especially for the ease of use, speed, nutritional values estimation and barcode reading. 53.2% and 53.5% of the students declared to be food information and nutrition label readers respectively and the Medi-Lite mean value was 9.98 ± 2.46. N-app-users were significantly more attentive to food information and nutrition label than app not-users (both p < 0.0001) and recorded a Medi-Lite score significantly higher (p = 0.0131). The present study found for the first time an extensive correlation between the use of n-apps, the food labels awareness and healthy eating habits in a digitally native population

    A yeast-based repurposing approach for the treatment of mitochondrial DNA depletion syndromes led to the identification of molecules able to modulate the dNTP pool

    Get PDF
    Mitochondrial DNA depletion syndromes (MDS) are clinically heterogenous and often severe diseases, characterized by a reduction of the number of copies of mitochondrial DNA (mtDNA) in affected tissues. In the context of MDS, yeast has proved to be both an excellent model for the study of the mechanisms underlying mitochondrial pathologies and for the discovery of new therapies via high-throughput assays. Among the several genes involved in MDS, it has been shown that recessive mutations in MPV17 cause a hepatocerebral form of MDS and Navajo neurohepatopathy. MPV17 encodes a non selective channel in the inner mitochondrial membrane, but its physiological role and the nature of its cargo remains elusive. In this study we identify ten drugs active against MPV17 disorder, modelled in yeast using the homologous gene SYM1. All ten of the identified molecules cause a concomitant increase of both the mitochondrial deoxyribonucleoside triphosphate (mtdNTP) pool and mtDNA stability, which suggests that the reduced availability of DNA synthesis precursors is the cause for the mtDNA deletion and depletion associated with Sym1 deficiency. We finally evaluated the effect of these molecules on mtDNA stability in two other MDS yeast models, extending the potential use of these drugs to a wider range of MDS patients

    Maxillary fungus ball: zinc-oxide endodontic materials as a risk factor

    Get PDF
    open7openNICOLAI, Piero; MENSI, Magda; Marsili, F.; Piccioni, M.; SALGARELLO, Stefano Alessandro; GILBERTI, Maria Enrica; Apostoli, P.Nicolai, Piero; Mensi, Magda; Marsili, F.; Piccioni, M.; Salgarello, Stefano Alessandro; Gilberti, Maria Enrica; Apostoli, P

    Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    Get PDF
    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  1019 cm−3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  1020 cm−3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved

    Evaluation Of Erythrocyte And Reticulocyte Parameters As Indicative Of Iron Deficiency In Patients With Anemia Of Chronic Disease

    Get PDF
    Objective: The aim of this study was to evaluate the effectiveness of mature red cell and reticulocyte parameters to identify three conditions: iron deficiency anemia, anemia of chronic disease, and anemia of chronic disease associated with absolute iron deficiency. Methods: Peripheral blood cells from 117 adult patients with anemia were classified according to iron status, inflammation, and hemoglobinopathies as: iron deficiency anemia (n = 42), anemia of chronic disease (n = 28), anemia of chronic disease associated with iron deficiency anemia (n = 22), and heterozygous β-thalassemia (n = 25). The percentage of microcytic erythrocytes, hypochromic erythrocytes, and the levels of hemoglobin in both reticulocytes and mature red cells were determined. Receiver operating characteristic analysis was used to evaluate the accuracy of the parameters in differentiating anemia. Results: There was no difference between the groups of iron deficiency and anemia of chronic disease associated with absolute iron deficiency for any of the parameters. The percentage of hypochromic erythrocytes was the best parameter to identify absolute iron deficiency in patients with anemia of chronic disease (area under curve = 0.785; 95% confidence interval: 0.661-0.909 with sensitivity of 72.7%, and specificity of 70.4%; cut-off value 1.8%). The formula microcytic erythrocyte count minus hypochromic erythrocyte count was very accurate to differentiate iron deficiency anemia from heterozygous β-thalassemia (area under curve = 0.977; 95% confidence interval: 0.950-1.005 with a sensitivity of 96.2%, and specificity of 92.7%; cut-off value 13.8). Conclusion: The erythrocyte and reticulocyte indices are moderately good to identify absolute iron deficiency in patients with anemia of chronic disease

    Enterobactérias isoladas de anfíbios e répteis

    Get PDF

    Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is caused when defects of motile cilia lead to chronic airway infections, male infertility, and situs abnormalities. Multiple causative PCD mutations account for only 65% of cases, suggesting that many genes essential for cilia function remain to be discovered. By using zebrafish morpholino knockdown of PCD candidate genes as an in vivo screening platform, we identified c21orf59, ccdc65, and c15orf26 as critical for cilia motility. c21orf59 and c15orf26 knockdown in zebrafish and planaria blocked outer dynein arm assembly, and ccdc65 knockdown altered cilia beat pattern. Biochemical analysis in Chlamydomonas revealed that the C21orf59 ortholog FBB18 is a flagellar matrix protein that accumulates specifically when cilia motility is impaired. The Chlamydomonas ida6 mutant identifies CCDC65/FAP250 as an essential component of the nexin-dynein regulatory complex. Analysis of 295 individuals with PCD identified recessive truncating mutations of C21orf59 in four families and CCDC65 in two families. Similar to findings in zebrafish and planaria, mutations in C21orf59 caused loss of both outer and inner dynein arm components. Our results characterize two genes associated with PCD-causing mutations and elucidate two distinct mechanisms critical for motile cilia function: dynein arm assembly for C21orf59 and assembly of the nexin-dynein regulatory complex for CCDC65

    LKB1 Destabilizes Microtubules in Myoblasts and Contributes to Myoblast Differentiation

    Get PDF
    Background: Skeletal muscle myoblast differentiation and fusion into multinucleate myotubes is associated with dramatic cytoskeletal changes. We find that microtubules in differentiated myotubes are highly stabilized, but premature microtubule stabilization blocks differentiation. Factors responsible for microtubule destabilization in myoblasts have not been identified. Findings: We find that a transient decrease in microtubule stabilization early during myoblast differentiation precedes the ultimate microtubule stabilization seen in differentiated myotubes. We report a role for the serine-threonine kinase LKB1 in both microtubule destabilization and myoblast differentiation. LKB1 overexpression reduced microtubule elongation in a Nocodazole washout assay, and LKB1 RNAi increased it, showing LKB1 destabilizes microtubule assembly in myoblasts. LKB1 levels and activity increased during myoblast differentiation, along with activation of the known LKB1 substrates AMPactivated protein kinase (AMPK) and microtubule affinity regulating kinases (MARKs). LKB1 overexpression accelerated differentiation, whereas RNAi impaired it. Conclusions: Reduced microtubule stability precedes myoblast differentiation and the associated ultimate microtubule stabilization seen in myotubes. LKB1 plays a positive role in microtubule destabilization in myoblasts and in myoblast differentiation. This work suggests a model by which LKB1-induced microtubule destabilization facilitates the cytoskeleta
    • …
    corecore