12,582 research outputs found
Making co-enrolment feasible for randomised controlled trials in paediatric intensive care.
Enrolling children into several trials could increase recruitment and lead to quicker delivery of optimal care in paediatric intensive care units (PICU). We evaluated decisions taken by clinicians and parents in PICU on co-enrolment for two large pragmatic trials: the CATCH trial (CATheters in CHildren) comparing impregnated with standard central venous catheters (CVCs) for reducing bloodstream infection in PICU and the CHIP trial comparing tight versus standard control of hyperglycaemia
Extracellular Enzyme Activity and Uptake of Carbon and Nitrogen Along an Estuarine Salinity and Nutrient Gradient
Amino acid oxidation (AAO) and peptide hydrolysis (PH) are processes affecting the recycling of organic material and nutrients. We compared extracellular AAO and PH rates to C and N uptake rates along estuarine gradients of salinity, nutrients and productivity in the Pocomoke River, a subestuary of the Chesapeake Bay. This estuary is seasonally depleted in inorganic N, and rich in dissolved organic material (DOM) throughout the year. AAO, PH, and N uptake rates measured in 1999 and 2000 were not limited to particular size fractions measured, or to auto- or heterotrophic groups of organisms. At a station near the turbidity maximum, where chlorophyll a biomass was highest, smaller (\u3c1.2 mum) size-fractions contributed \u3c20% of the AAO in May and up to 80% in August when AAO rates were similar to 10 times lower. Most PH was in the larger (\u3e1.2 mum) size-fraction, except at the least saline station in August of both years. Rates of AAO and PH were not linearly correlated with each other seasonally or spatially. Uptake of NH4+ dominated total N uptake (\u3e50%) at all but the freshwater station, although uptake of organic compounds was measurable at all sites. Rates of dissolved free amino acid uptake, measured using dually labeled compounds, were substantial (up to 11% of the total N uptake) and contributed both C and N for growth. Dual labels unambiguously demonstrated that uptake rates of amino acid C and N were uncoupled; amino acid N was taken up preferentially to amino acid C even when rates were corrected for N uptake from AAO. Conceptual models of DOM cycling should include the realization that enzymatic processes and uptake of DOM occur in both \u27microbial\u27 and larger size fractions. Thus, competition between bacteria and phytoplankton mixotrophs may be an important factor determining the relative uptake of C and N from amino acids and other organic substrates
Health of Philippine Emigrants Study (HoPES): study design and rationale.
BackgroundImmigrants to the United States are usually healthier than their U.S.-born counterparts, yet the health of immigrants declines with duration of stay in the U.S. This pattern is often seen for numerous health problems such as obesity, and is usually attributed to acculturation (the adoption of "American" behaviors and norms). However, an alternative explanation is secular trends, given that rates of obesity have been rising globally. Few studies of immigrants are designed to distinguish the effects of acculturation versus secular trends, in part because most studies of immigrants are cross-sectional, lack baseline data prior to migration, and do not have a comparison group of non-migrants in the country of origin. This paper describes the Health of Philippine Emigrants Study (HoPES), a study designed to address many of these limitations.MethodsHoPES is a dual-cohort, longitudinal, transnational study. The first cohort consisted of Filipinos migrating to the United States (n = 832). The second cohort consisted of non-migrant Filipinos who planned to remain in the Philippines (n = 805). Baseline data were collected from both cohorts in 2017 in the Philippines, with follow-up data collection planned over 3 years in either the U.S. for the migrant cohort or the Philippines for the non-migrant cohort. At baseline, interviewers administered semi-structured questionnaires that assessed demographic characteristics, diet, physical activity, stress, and immigration experiences. Interviewers also measured weight, height, waist and hip circumferences, blood pressure, and collected dried blood spot samples.DiscussionMigrants enrolled in the study appear to be representative of recent Filipino migrants to the U.S. Additionally, migrant and non-migrant study participants are comparable on several characteristics that we attempted to balance at baseline, including age, gender, and education. HoPES is a unique study that approximates a natural experiment from which to study the effects of immigration on obesity and other health problems. A number of innovative methodological strategies were pursued to expand the boundaries of current immigrant health research. Key to accomplishing this research was investment in building collaborative relationships with stakeholders across the U.S. and the Philippines with shared interest in the health of migrants
A longitudinal study of muscle rehabilitation in the lower leg after cast removal using Magnetic Resonance Imaging and strength assessment
Acknowledgements We thank the A&E nurses and plaster technicians for identifying suitable patients, the MRI radiographers for performing the scanning, Dr Scott Semple for invaluable help in some of the pilot studies and Mr E. C. Stevenson for constructing the footrest used in the scanner. We are very grateful to the dedicated patients themselves who gave considerable amounts of time to come in for scanning, exercise and assessment during the course of this study.Peer reviewedPublisher PD
Risk of maltreatment-related injury: a cross-sectional study of children under five years old admitted to hospital with a head or neck injury or fracture.
To determine the predictive value and sensitivity of demographic features and injuries (indicators) for maltreatment-related codes in hospital discharge records of children admitted with a head or neck injury or fracture
Convolutional neural networks for challenges in automated nuclide identification
Improvements in Radio-Isotope IDentification (RIID) algorithms have seen a resurgence in interest with the increased accessibility of machine learning models. Convolutional Neural Network (CNN)-based models have been developed to identify arbitrary mixtures of unstable nuclides from gamma spectra. In service of this, methods for the simulation and pre-processing of training data were also developed. The implementation of 1D multi-class, multi-label CNNs demonstrated good generalisation to real spectra with poor statistics and significant gain shifts. It is also shown that even basic CNN architectures prove reliable for RIID under the challenging conditions of heavy shielding and close source geometries, and may be extended to generalised solutions for pragmatic RIID
Ionic Tuning of Cobaltites at the Nanoscale
Control of materials through custom design of ionic distributions represents
a powerful new approach to develop future technologies ranging from spintronic
logic and memory devices to energy storage. Perovskites have shown particular
promise for ionic devices due to their high ion mobility and sensitivity to
chemical stoichiometry. In this work, we demonstrate a solid-state approach to
control of ionic distributions in (La,Sr)CoO thin films. Depositing a Gd
capping layer on the perovskite film, oxygen is controllably extracted from the
structure, up-to 0.5 O/u.c. throughout the entire 36 nm thickness. Commensurate
with the oxygen extraction, the Co valence state and saturation magnetization
show a smooth continuous variation. In contrast, magnetoresistance measurements
show no-change in the magnetic anisotropy and a rapid increase in the
resistivity over the same range of oxygen stoichiometry. These results suggest
significant phase separation, with metallic ferromagnetic regions and
oxygen-deficient, insulating, non-ferromagnetic regions, forming percolated
networks. Indeed, X-ray diffraction identifies oxygen-vacancy ordering,
including transformation to a brownmillerite crystal structure. The unexpected
transformation to the brownmillerite phase at ambient temperature is further
confirmed by high-resolution scanning transmission electron microscopy which
shows significant structural - and correspondingly chemical - phase separation.
This work demonstrates room-temperature ionic control of magnetism, electrical
resistivity, and crystalline structure in a 36 nm thick film, presenting new
opportunities for ionic devices that leverage multiple material
functionalities
- …