1,981 research outputs found
Densest Subgraph in Dynamic Graph Streams
In this paper, we consider the problem of approximating the densest subgraph
in the dynamic graph stream model. In this model of computation, the input
graph is defined by an arbitrary sequence of edge insertions and deletions and
the goal is to analyze properties of the resulting graph given memory that is
sub-linear in the size of the stream. We present a single-pass algorithm that
returns a approximation of the maximum density with high
probability; the algorithm uses O(\epsilon^{-2} n \polylog n) space,
processes each stream update in \polylog (n) time, and uses \poly(n)
post-processing time where is the number of nodes. The space used by our
algorithm matches the lower bound of Bahmani et al.~(PVLDB 2012) up to a
poly-logarithmic factor for constant . The best existing results for
this problem were established recently by Bhattacharya et al.~(STOC 2015). They
presented a approximation algorithm using similar space and
another algorithm that both processed each update and maintained a
approximation of the current maximum density in \polylog (n)
time per-update.Comment: To appear in MFCS 201
Boundaries of Disk-like Self-affine Tiles
Let be a disk-like self-affine tile generated by an
integral expanding matrix and a consecutive collinear digit set , and let be the characteristic polynomial of . In the
paper, we identify the boundary with a sofic system by
constructing a neighbor graph and derive equivalent conditions for the pair
to be a number system. Moreover, by using the graph-directed
construction and a device of pseudo-norm , we find the generalized
Hausdorff dimension where
is the spectral radius of certain contact matrix . Especially,
when is a similarity, we obtain the standard Hausdorff dimension where is the largest positive zero of
the cubic polynomial , which is simpler than
the known result.Comment: 26 pages, 11 figure
Interphase chromosome positioning in in vitro porcine cells and ex vivo porcine tissues
Copyright @ 2012 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 85 reproduction in any medium, provided the original author and source are credited. The article was made available through the Brunel University Open Access Publishing Fund.BACKGROUND: In interphase nuclei of a wide range of species chromosomes are organised into their own specific locations termed territories. These chromosome territories are non-randomly positioned in nuclei which is believed to be related to a spatial aspect of regulatory control over gene expression. In this study we have adopted the pig as a model in which to study interphase chromosome positioning and follows on from other studies from our group of using pig cells and tissues to study interphase genome re-positioning during differentiation. The pig is an important model organism both economically and as a closely related species to study human disease models. This is why great efforts have been made to accomplish the full genome sequence in the last decade. RESULTS: This study has positioned most of the porcine chromosomes in in vitro cultured adult and embryonic fibroblasts, early passage stromal derived mesenchymal stem cells and lymphocytes. The study is further expanded to position four chromosomes in ex vivo tissue derived from pig kidney, lung and brain. CONCLUSIONS: It was concluded that porcine chromosomes are also non-randomly positioned within interphase nuclei with few major differences in chromosome position in interphase nuclei between different cell and tissue types. There were also no differences between preferred nuclear location of chromosomes in in vitro cultured cells as compared to cells in tissue sections. Using a number of analyses to ascertain by what criteria porcine chromosomes were positioned in interphase nuclei; we found a correlation with DNA content.This study is partly supported by Sygen International PLC
OMA orthology in 2021: website overhaul, conserved isoforms, ancestral gene order and more
OMA is an established resource to elucidate evolutionary relationships among genes from currently 2326 genomes covering all domains of life. OMA provides pairwise and groupwise orthologs, functional annotations, local and global gene order conservation (synteny) information, among many other functions. This update paper describes the reorganisation of the database into gene-, group- and genome-centric pages. Other new and improved features are detailed, such as reporting of the evolutionarily best conserved isoforms of alternatively spliced genes, the inferred local order of ancestral genes, phylogenetic profiling, better cross-references, fast genome mapping, semantic data sharing via RDF, as well as a special coronavirus OMA with 119 viruses from the Nidovirales order, including SARS-CoV-2, the agent of the COVID-19 pandemic. We conclude with improvements to the documentation of the resource through primers, tutorials and short videos. OMA is accessible at https://omabrowser.org
Facial expressions depicting compassionate and critical emotions: the development and validation of a new emotional face stimulus set
Attachment with altruistic others requires the ability to appropriately process affiliative and kind facial cues. Yet there is no stimulus set available to investigate such processes. Here, we developed a stimulus set depicting compassionate and critical facial expressions, and validated its effectiveness using well-established visual-probe methodology. In Study 1, 62 participants rated photographs of actors displaying compassionate/kind and critical faces on strength of emotion type. This produced a new stimulus set based on N = 31 actors, whose facial expressions were reliably distinguished as compassionate, critical and neutral. In Study 2, 70 participants completed a visual-probe task measuring attentional orientation to critical and compassionate/kind faces. This revealed that participants lower in self-criticism demonstrated enhanced attention to compassionate/kind faces whereas those higher in self-criticism showed no bias. To sum, the new stimulus set produced interpretable findings using visual-probe methodology and is the first to include higher order, complex positive affect displays
Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material
<p>Abstract</p> <p>Background</p> <p>Modular neck adapters for hip arthroplasty stems allow the surgeon to modify CCD angle, offset and femoral anteversion intraoperatively. Fretting or crevice corrosion may lead to failure of such a modular device due to high loads or surface contamination inside the modular coupling. Unfortunately we have experienced such a failure of implants and now report our clinical experience with the failures in order to advance orthopaedic material research and joint replacement surgery.</p> <p>The failed neck adapters were implanted between August 2004 and November 2006 a total of about 5000 devices. After this period, the titanium neck adapters were replaced by adapters out of cobalt-chromium. Until the end of 2008 in total 1.4% (n = 68) of the implanted titanium alloy neck adapters failed with an average time of 2.0 years (0.7 to 4.0 years) postoperatively. All, but one, patients were male, their average age being 57.4 years (36 to 75 years) and the average weight 102.3 kg (75 to 130 kg). The failures of neck adapters were divided into 66% with small CCD of 130° and 60% with head lengths of L or larger. Assuming an average time to failure of 2.8 years, the cumulative failure rate was calculated with 2.4%.</p> <p>Methods</p> <p>A series of adapter failures of titanium alloy modular neck adapters in combination with a titanium alloy modular short hip stem was investigated. For patients having received this particular implant combination risk factors were identified which were associated with the occurence of implant failure. A Kaplan-Meier survival-failure-analysis was conducted. The retrieved implants were analysed using microscopic and chemical methods. Modes of failure were simulated in biomechanical tests. Comparative tests included modular neck adapters made of titanium alloy and cobalt chrome alloy material.</p> <p>Results</p> <p>Retrieval examinations and biomechanical simulation revealed that primary micromotions initiated fretting within the modular tapered neck connection. A continuous abrasion and repassivation process with a subsequent cold welding at the titanium alloy modular interface. Surface layers of 10 - 30 μm titanium oxide were observed. Surface cracks caused by fretting or fretting corrosion finally lead to fatigue fracture of the titanium alloy modular neck adapters. Neck adapters made of cobalt chrome alloy show significantly reduced micromotions especially in case of contaminated cone connection. With a cobalt-chromium neck the micromotions can be reduced by a factor of 3 compared to the titanium neck. The incidence of fretting corrosion was also substantially lower with the cobalt-chromium neck configuration.</p> <p>Conclusions</p> <p>Failure of modular titanium alloy neck adapters can be initiated by surface micromotions due to surface contamination or highly loaded implant components. In the present study, the patients at risk were men with an average weight over 100 kg. Modular cobalt chrome neck adapters provide higher safety compared to titanium alloy material.</p
Ecological Determinants of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh
BACKGROUND: The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. METHODOLOGY/PRINCIPAL FINDINGS: An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007-2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. CONCLUSIONS/SIGNIFICANCE: The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and duck-rice cultivation interacted ecology are not significant determinants for Bangladesh. These findings will refine current understanding of the HPAI-H5N1 epidemiology in Bangladesh
Oxygen Enhanced Optoacoustic Tomography (OE-OT) Reveals Vascular Dynamics in Murine Models of Prostate Cancer
Poor oxygenation of solid tumours has been linked with resistance to chemo- and radio-therapy and poor patient outcomes, hence non-invasive imaging of oxygen supply and demand in tumours could improve disease staging and therapeutic monitoring. Optoacoustic tomography (OT) is an emerging clinical imaging modality that provides static images of endogenous haemoglobin concentration and oxygenation. Here, we demonstrate oxygen enhanced (OE)-OT, exploiting an oxygen gas challenge to visualise the spatiotemporal heterogeneity of tumour vascular function. We show that tracking oxygenation dynamics using OE-OT reveals significant differences between two prostate cancer models in nude mice with markedly different vascular function (PC3 & LNCaP), which appear identical in static OT. LNCaP tumours showed a spatially heterogeneous response within and between tumours, with a substantial but slow response to the gas challenge, aligned with ex vivo analysis, which revealed a generally perfused and viable tumour with marked areas of haemorrhage. PC3 tumours had a lower fraction of responding pixels compared to LNCaP with a high disparity between rim and core response. While the PC3 core showed little or no dynamic response, the rim showed a rapid change, consistent with our ex vivo findings of hypoxic and necrotic core tissue surrounded by a rim of mature and perfused vasculature. OE-OT metrics are shown to be highly repeatable and correlate directly on a per-tumour basis to tumour vessel function assessed ex vivo. OE-OT provides a non-invasive approach to reveal the complex dynamics of tumour vessel perfusion, permeability and vasoactivity in real time. Our findings indicate that OE-OT holds potential for application in prostate cancer patients, to improve delineation of aggressive and indolent disease as well as in patient stratification for chemo- and radio-therapy.We would also like to thank the CRUK Cambridge Institute Core Facilities for their support, including the BRU, Histopathology, Light Microscopy, Biorepository, and Preclinical Imaging. We are grateful for advice from Dr Simon Richardson (Institute of Cancer Research, Sutton, UK) on optimal use of the Oxylite pO2 probe. This work was supported by the EPSRC-CRUK Cancer Imaging Centre in Cambridge and Manchester (C197/A16465), Cancer Research UK (C14303/A17197, C47594/A16267) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° FP7-PEOPLE-2013-CIG-630729
Recommended from our members
Effects of a games-based physical education lesson on cognitive function in adolescents
Despite the importance of physical education (PE) lessons for physical activity in adolescents, the acute cognitive responses to PE lessons have not been explored; a gap in the literature that this study addresses. Following familiarisation, 76 (39 female) adolescents (12.2 ± 0.4 y) completed two trials (60 min games-based PE lesson and 60 min academic lesson) separated by 7-d in a counterbalanced, crossover design. Attention, executive function, working memory, and perception were assessed 30 min before, immediately post, and 45 min post-lesson in both trials. Participants were split into high-and low-fit groups based on a gender-specific median split of distance run on the multi-stage fitness test. Furthermore, participants were split into high and low MVPA groups based on a gender-specific median split of MVPA time (time spent >64% HR max) during the PE lesson. Overall, a 60 min games-based PE lesson had no effect on perception, working memory, attention, or executive function in adolescents (all p > 0.05) unless MVPA time is high. The physical activity-cognition relationship was moderated by MVPA, as working memory improved post-PE lesson in adolescents who completed more MVPA during their PE lesson (time*trial*MVPA interaction, p < 0.05, partial η2 = 0.119). Furthermore, high-fit adolescents displayed superior cognitive function than their low-fit counterparts, across all domains of cognitive function (main effect of fitness, all p < 0.05, partial η2 0.014–0.121). This study provides novel evidence that MVPA time moderates the cognitive response to a games-based PE lesson; and emphasises that higher levels of fitness are beneficial for cognitive function in adolescents
Satellite remote sensing data can be used to model marine microbial metabolite turnover
Sampling ecosystems, even at a local scale, at the temporal and spatial resolution necessary to capture natural variability in microbial communities are prohibitively expensive. We extrapolated marine surface microbial community structure and metabolic potential from 72 16S rRNA amplicon and 8 metagenomic observations using remotely sensed environmental parameters to create a system-scale model of marine microbial metabolism for 5904 grid cells (49 km2) in the Western English Chanel, across 3 years of weekly averages. Thirteen environmental variables predicted the relative abundance of 24 bacterial Orders and 1715 unique enzyme-encoding genes that encode turnover of 2893 metabolites. The genes’ predicted relative abundance was highly correlated (Pearson Correlation 0.72, P-value <10−6) with their observed relative abundance in sequenced metagenomes. Predictions of the relative turnover (synthesis or consumption) of CO2 were significantly correlated with observed surface CO2 fugacity. The spatial and temporal variation in the predicted relative abundances of genes coding for cyanase, carbon monoxide and malate dehydrogenase were investigated along with the predicted inter-annual variation in relative consumption or production of ~3000 metabolites forming six significant temporal clusters. These spatiotemporal distributions could possibly be explained by the co-occurrence of anaerobic and aerobic metabolisms associated with localized plankton blooms or sediment resuspension, which facilitate the presence of anaerobic micro-niches. This predictive model provides a general framework for focusing future sampling and experimental design to relate biogeochemical turnover to microbial ecology
- …