44 research outputs found

    Bendiocarb, a potential alternative against pyrethroid resistant Anopheles gambiae in Benin, West Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles gambiae</it>, the main malaria vector in Benin has developed high level of resistance to pyrethroid insecticides, which is a serious concern to the future use of long-lasting insecticidal nets (LLIN) and indoor residual spraying (IRS). In this context, one of the pathways available for malaria vector control would be to investigate alternative classes of insecticides with different mode of action than that of pyrethroids. The goal of this study was to evaluate under field conditions the efficacy of a carbamate (bendiocarb) and an organophosphate (fenitrothion) against pyrethroid-resistant <it>An. gambiae s.s</it>.</p> <p>Methods</p> <p>Wild populations and females from laboratory colonies of five days old <it>An. gambiae </it>were bio-assayed during this study. Two pyrethroids (deltamethrin and alphacypermethrin), an organophosphate (fenitrothion), a carbamate (bendiocarb) and a mixture of an organophosphate (chlorpyriphos + a pyrethroid deltamethrin) were compared in experimental huts as IRS treatments. Insecticides were applied in the huts using a hand-operated compression sprayer. The deterrency, exophily, blood feeding rate and mortality induced by these insecticides against <it>An. gambiae </it>were compared to the untreated control huts.</p> <p>Results</p> <p>Deltamethrin, alphacypermethrin and bendiocarb treatment significantly reduced mosquito entry into the huts (p < 0.05) compared to untreated huts. Blood feeding rates in huts treated with fenitrothion and the mixture chlorpyriphos/deltamethrin were reduced from 10.95% respectively to 3.7% and 4.47% three months after treatment and from 10.20% to 4.4% and 2.04% four months after treatment. Exophily rates in huts with deltamethrin, alphacypermethrin and the mixture chlorpyriphos/deltamethrin were significantly higher than in the huts with fenitrothion. Deltamethrin and alphacypermethrin had the lowest mortality rate while fenitrothion killed 100% of <it>An. gambiae </it>(in the first month) and 77.8% (in the fourth month). Bendiocarb and the mixture chlorpyriphos/deltamethrin mortality rates ranged from 97.9 to 100% the first month and 77.7-88% the third month respectively.</p> <p>Conclusion</p> <p>After four months, fenitrothion, bendiocarb and the mixture chlorpyriphos/deltamethrin performed effectively against pyrethroid-resistant <it>Anopheles</it>. These results showed that bendiocarb could be recommended as an effective insecticide for use in IRS operations in Benin, particularly as the mixture chlorpyriphos/deltamethrin does not have WHOPES authorization and complaints were mentioned by the sleepers about the safety and smell of fenitrothion.</p

    Community evaluation of the physical and insecticidal durability of DuraNet® Plus, an alpha-cypermethrin and piperonyl butoxide incorporated mosquito net: protocol for a multi-country study in West, Central and East Africa

    Get PDF
    Background: Pyrethroid-PBO nets have demonstrated improved impact against clinical malaria transmitted by pyrethroid resistant mosquito vectors and are being scaled up across Africa. However very little is known about their physical and insecticidal durability under operational conditions. This study will investigate the attrition, fabric integrity, insecticide content and bioefficacy of DuraNet® Plus, a new WHO prequalified alphacypermethrin and PBO incorporated net developed by Shobikaa Impex Private Limited over 3 years of field use in communities in Benin, Cameroon and Tanzania. Methods: The study will be conducted in parallel in selected villages in Zakpota District in Benin, Mbalmayo, District in Cameroon and Muheza District in Tanzania. In each country, ~ 1800 households will be recruited and randomised to receive DuraNet® Plus or DuraNet® (a WHO prequalified alphacypermethrin-only ITN). Follow up surveys will be performed at 1 month post distribution to investigate adverse events and subsequently every 6–12 months to assess ITN attrition and fabric integrity following standard WHO procedures. A second cohort of nets will be withdrawn every 6–12 months and assessed for alpha-cypermethrin and PBO content and for entomological activity in laboratory bioassays (cone bioassays and tunnel tests). Alpha-cypermethrin bioefficacy will be monitored using the susceptible Anopheles gambiae Kisumu strain in cone bioassays while PBO bioefficacy will be monitored using pyrethroid resistant strains with overexpressed P450 enzymes in tunnel tests to determine the proportion of efficacious nets (≥ 95% knockdown, ≥ 80% mortality or ≥ 90% blood feeding inhibition in tunnels) at each time point. Nets withdrawn at 12, 24 and 36 months from each country will also be tested in experimental hut trials against wild free-flying pyrethroid resistant Anopheles gambiae sl in Côvè Benin to investigate the superiority of DuraNet® Plus over DuraNet® at each time point under semi field conditions. Conclusion: This large-scale multi country trial will provide useful information on the durability of a pyrethroid-PBO net (DuraNet® Plus) in 3 different regions in sub-Saharan Africa. The methods proposed for bioefficacy testing could also contribute towards the development of new standardised guidelines for monitoring the insecticidal efficacy of pyrethroid-PBO nets under operational conditions

    VECTRON™ T500, a new broflanilide insecticide for indoor residual spraying, provides prolonged control of pyrethroid-resistant malaria vectors.

    Get PDF
    BACKGROUND: Broflanilide is a newly discovered insecticide with a novel mode of action targeting insect γ-aminobutyric acid receptors. The efficacy of VECTRON™ T500, a wettable powder formulation of broflanilide, was assessed for IRS against wild pyrethroid-resistant malaria vectors in experimental huts in Benin. METHODS: VECTRON™ T500 was evaluated at 100 mg/m2 in mud and cement-walled experimental huts against wild pyrethroid-resistant Anopheles gambiae sensu lato (s.l.) in Covè, southern Benin, over 18 months. A direct comparison was made with Actellic® 300CS, a WHO-recommended micro-encapsulated formulation of pirimiphos-methyl, applied at 1000 mg/m2. The vector population at Covè was investigated for susceptibility to broflanilide and other classes of insecticides used for vector control. Monthly wall cone bioassays were performed to assess the residual efficacy of VECTRON™ T500 using insecticide susceptible An. gambiae Kisumu and pyrethroid-resistant An. gambiae s.l. Covè strains. The study complied with OECD principles of good laboratory practice. RESULTS: The vector population at Covè was resistant to pyrethroids and organochlorines but susceptible to broflanilide and pirimiphos-methyl. A total of 23,171 free-flying wild pyrethroid-resistant female An. gambiae s.l. were collected in the experimental huts over 12 months. VECTRON™ T500 induced 56%-60% mortality in wild vector mosquitoes in both cement and mud-walled huts. Mortality with VECTRON™ T500 was 62%-73% in the first three months and remained > 50% for 9 months on both substrate-types. By comparison, mortality with Actellic® 300CS was very high in the first three months (72%-95%) but declined sharply to < 40% after 4 months. Using a non-inferiority margin defined by the World Health Organization, overall mortality achieved with VECTRON™ T500 was non-inferior to that observed in huts treated with Actellic® 300CS with both cement and mud wall substrates. Monthly in situ wall cone bioassay mortality with VECTRON™ T500 also remained over 80% for 18 months but dropped below 80% with Actellic® 300CS at 6-7 months post spraying. CONCLUSION: VECTRON™ T500 shows potential to provide substantial and prolonged control of malaria transmitted by pyrethroid-resistant mosquito vectors when applied for IRS. Its addition to the current list of WHO-approved IRS insecticides will provide a suitable option to facilitate rotation of IRS products with different modes of action

    Evidence of Transmission of Plasmodium vivax 210 and Plasmodium vivax 247 by Anopheles gambiae and An. coluzzii, Major Malaria Vectors in Benin/West Africa

    Get PDF
    Current diagnostic and surveillance systems in Benin are not designed to accurately identify or report non-Plasmodium falciparum (Pf) human malaria infections. This study aims to assess and compare the prevalence of circumsporozoite protein (CSP) antibodies of Pf and P. vivax (Pv) in Anopheles gambiae s.l. in Benin. For that, mosquito collections were performed through human landing catches (HLC) and pyrethrum spray catches (PSC). The collected mosquitoes were morphologically identified, and Pf, Pv 210, and Pv 247 CSP antibodies were sought in An. gambiae s.l. through the ELISA and polymerase chain reaction (PCR) techniques. Of the 32,773 collected mosquitoes, 20.9% were An. gambiae s.l., 3.9% An. funestus gr., and 0.6% An. nili gr. In An. gambiae s.l., the sporozoite rate was 2.6% (95% CI: 2.1-3.1) for Pf, against 0.30% (95% CI: 0.1-0.5) and 0.2% (95% CI: 0.1-0.4), respectively, for Pv 210 and Pv 247. P. falciparum sporozoite positive mosquitoes were mostly An. gambiae (64.35%), followed by An. coluzzii (34.78%) and An. arabiensis (0.86%). At the opposite, for the Pv 210 sporozoite-positive mosquitoes, An. coluzzii and An. gambiae accounted for 76.92% and 23.08%, respectively. Overall, the present study shows that P. falciparum is not the only Plasmodium species involved in malaria cases in Benin

    Efficacy of Actellic 300 CS-based indoor residual spraying on key entomological indicators of malaria transmission in Alibori and Donga, two regions of northern Benin

    Get PDF
    Abstract Background The current study shows the results of three years of IRS entomological monitoring (2016, before intervention; 2017 and 2018, after intervention) performed in Alibori and Donga, northern Benin. Methods Mosquito collections were performed on a monthly basis using human landing catches and pyrethrum spray catches in six districts including four treated with Actellic 300 CS (Kandi, Gogounou, Djougou and Copargo) and two untreated (Bembèrèkè and Kouandé) which served as control sites. Key transmission indicators of Anopheles gambiae (s.l.) as well as the residual activity of Actellic 300 CS assessed through WHO cone tests, were determined. Results The residual efficacy duration of Actellic 300 CS after the two IRS campaigns (2017 and 2018) was 4–5 months (May–September). The parity rate and the sporozoite index of An. gambiae (s.l.) were 36.62% and 0.71%, respectively, after the first spray round in treated areas compared to 57.24% and 3.7%, respectively, in the control areas (P &lt; 0.0001). The same trend was observed after the second spray round. After the first spray round, each person received 1.6 infective bites/month (ib/m) in the treated areas against 12.11 ib/m in the control areas, resulting in a reduction rate of 86.78%. Similarly, the entomological inoculation rate was 1.5 ib/m after the second spray round in the treated areas vs 9.75 ib/m in the control areas, corresponding to a reduction of 84.61%. A decrease in the parity rate (46.26%), sporozoite index (85.75%) and EIR (87.27%) was observed for An. gambiae (s.l.) after the first round of IRS (June–October 2017) compared to the pre-intervention period (June–October 2016). The density of An. gambiae (s.l.) ranged between 0.38–0.48 per house in treated areas vs 1.53–1.76 An. gambiae (s.l.) per house respectively after the first and second IRS rounds. Conclusions This study showed the positive impact of IRS in reducing key entomological parameters of malaria transmission in Alibori and Donga. However, the considerable blood-feeding rate of An. gambiae (s.l.) in spray areas, stress the need for the population to sleep under long-lasting insecticidal nets (LLINs) in addition, to prevent from mosquito bites which did not succeed in resting on sprayed walls. </jats:sec

    Resistance status of Anopheles gambiae s.l. to insecticides following the 2011 mass distribution campaign of long-lasting insecticidal nets (LLINs) in the Plateau Department, south-eastern Benin

    Get PDF
    Abstract Background In 2011, Benin’s National Malaria Control Programme (NMCP) organized a nationwide mass distribution campaign of LLINs throughout the country. Following this intervention, it was important to assess whether the level of susceptibility of malaria vectors to insecticides had remained the same as compared to the pre-intervention period. The current study investigated this. Methods Larval collections were conducted in Ifangni, Sakété, Pobè and Kétou districts located in Plateau department, Southeastern Benin before (2009) and after (2012–2013) LLIN distribution. Anopheles gambiae sensu lato (s.l.) larvae from the 4 study districts were reared to adulthood and WHO susceptibility tests were conducted. The insecticides tested were deltamethrin (0.05%), permethrin (0.75%), bendiocarb (0.1%) and DDT (4%). Molecular species identification as well as, the characterization of the kdr L1014F mutation were also performed in the An. gambiae s.l. complex using PCR method. Results Overall, a significant decrease in mortality rates of An. gambiae s.l. to deltamethrin (0.05%), permethrin (0.75%) and DDT (4%) was observed post-LLIN distribution, respectively: (100% vs 80.9%, p &lt; 0.0001), (77.5% vs 70%, p = 0.01) and, (47.8% vs 4.4%, p &lt; 0.0001). By contrast, susceptibility of vectors to bendiocarb (0.1%) remained the same (100% mortality in the WHO susceptibility tube tests) pre- and post-intervention. An increase in the kdr L1014F frequency was observed post-LLIN distribution [F(kdr) = 0.91)] compared to the pre-intervention period [F(kdr) = 0.56], p &lt; 0.0001. Anopheles coluzzii and An. gambiae were the two molecular species identified in the study area. Conclusion The decrease susceptibility to pyrethroids and DDT as well as, the increase in the frequency of the kdr L1014F mutation after the intervention stressed at the time, the need for the development and implementation of effective insecticide resistance management strategies. At present, an update of the vectors resistance status in the area is also necessary for decision-making. </jats:sec

    Community evaluation of VECTRON™ T500, a broflanilide insecticide, for indoor residual spraying for malaria vector control in central Benin; a two arm non-inferiority cluster randomised trial.

    Get PDF
    VECTRON™ T500 is a wettable powder IRS formulation of broflanilide, a newly discovered insecticide. We performed a two-arm non-inferiority community randomised evaluation of VECTRON™ T500, compared to Fludora® Fusion against pyrethroid-resistant Anopheles gambiae s.l. in an area of high coverage with pyrethroid-only nets in the Za-Kpota District of central Benin. One round of IRS was applied in all consenting households in the study area. Sixteen clusters were randomised (1:1) to receive VECTRON™ T500 (100 mg/m2 for broflanilide) or Fludora® Fusion (200 mg/m2 for clothianidin and 25 mg/m2 for deltamethrin). Surveys were performed to assess adverse events and the operational feasibility and acceptability of VECTRON™ T500 among spray operators and household inhabitants. Human landing catches were conducted in 6 households every 1-2 months for up to 18 months post-intervention to assess the impact on vector densities, sporozoite rates and entomological inoculation rates. Bottle bioassays were performed to monitor vector susceptibility to pyrethroids, broflanilide and clothianidin. Monthly wall cone bioassays were conducted for 24 months to assess the residual efficacy of the IRS formulations using susceptible and pyrethroid-resistant An. gambiae s.l. A total of 26,562 female mosquitoes were collected during the study, of which 40% were An. gambiae s.l., the main malaria vector in the study area. The vector population showed high intensity pyrethroid resistance but was susceptible to broflanilide (6 µg/bottle) and clothianidin (90 µg/bottle). Using a non-inferiority margin of 50%, vector density indicated by the human biting rate (bites/person/night) was non-inferior in the VECTRON™ T500 arm compared to the Fludora® Fusion arm both indoors (0.846 bites/p/n in Fludora® Fusion arm vs. 0.741 bites/p/n in VECTRON™ T500 arm, IRR 0.54, 95% CI 0.22-1.35, p = 0.150) and outdoors (0.691 bites/p/n in Fludora® Fusion arm vs. 0.590 bites/p/n in VECTRON™ T500 clusters, IRR 0.75, 95% CI 0.41-1.38, p = 0.297). Sporozoite rates and entomological inoculation rates did not differ significantly between study arms (sporozoite rate: 0.9% vs 1.1%, p = 0. 0.746, EIR: 0.008 vs 0.006 infective bites per person per night, p = 0.589). Cone bioassay mortality with both VECTRON™ T500 and Fludora® Fusion was 100% for 24 months post-IRS application on both cement and mud treated house walls with both susceptible and pyrethroid-resistant strains of An. gambiae s.l. Perceived adverse events reported by spray operators and householders were generally very low (< 6%) in both study arms. VECTRON™ T500 was non-inferior to Fludora® Fusion in reducing the risk of malaria transmission by pyrethroid resistant vectors when applied for IRS in communities in central Benin. The insecticide showed prolonged residual efficacy on house walls, lasting over 24 months and had a high acceptability with homeowners. Community application of VECTRON™ T500 for IRS provides improved and prolonged control of pyrethroid resistant malaria vectors and enhances our capacity to manage insecticide resistance

    The impact of the expansion of urban vegetable farming on malaria transmission in major cities of Benin

    Get PDF
    BACKGROUND: Urban agricultural practices are expanding in several cities of the Republic of Benin. This study aims to assess the impact of such practices on transmission of the malaria parasite in major cities of Benin. METHOD: A cross sectional entomological study was carried out from January to December 2009 in two vegetable farming sites in southern Benin (Houeyiho and Acron) and one in the northern area (Azèrèkè). The study was based on sampling of mosquitoes by Human Landing Catches (HLC) in households close to the vegetable farms and in others located far from the farms. RESULTS: During the year of study, 71,678 female mosquitoes were caught by HLC of which 25% (17,920/71,678) were Anopheles species. In the areas surveyed, the main malaria parasite, Plasmodium falciparum was transmitted in the south by Anopheles gambiae s.s. Transmission was high during the two rainy seasons (April to July and October to November) but declined in the two dry seasons (December to March and August to September). In the north, transmission occurred from June to October during the rainy season and was vehicled by two members of the An. gambiae complex: Anopheles gambiae s.s. (98%) and Anopheles arabiensis (2%).At Houeyiho, Acron and Azèrèkè, the Entomological Inoculation Rates (EIRs) and the Human Biting Rates (HBRs) were significantly higher during the dry season in Households Close to Vegetable Farms (HCVF) than in those located far from the vegetable areas (HFVF) (p 0.05).The knock-down resistance (kdr) mutation was the main resistance mechanism detected at high frequency (0.86 to 0.91) in An. gambiae s.l. at all sites. The ace-1R mutation was also found but at a very low frequency (< 0.1). CONCLUSION: These findings showed that communities living close to vegetable farms are permanently exposed to malaria throughout the year, whereas the risk in those living far from such agricultural practices is limited and only critical during the rainy seasons. Measures must be taken by African governments to create awareness among farmers and ultimately decentralize farming activities from urban to rural areas where human-vector contact is limited

    Efficacy of Pyrethroid-Pyriproxyfen and Pyrethroid-Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs) for the Control of Non-Anopheles Mosquitoes: Secondary Analysis from a Cluster Randomised Controlled Trial (cRCT)

    Get PDF
    The efficacy of a vector control tool in reducing mosquito biting is crucial for its acceptability. The present study compared the vector density of Culex spp. And Mansonia spp. across clusters, which received two dual-active ingredient (a.i.) long-lasting insecticidal nets (LLINs) and a standard pyrethroid-only LLIN, and assessed the seasonality of these mosquito genera. A total of 85,723 Culex spp. and 144,025 Mansonia spp. were caught over the study period. The density of Culex and Mansonia was reduced in all three arms over the study period. There was no evidence of a significant reduction in the indoor or outdoor density of Culex spp. in either dual-a.i. LLIN arm as compared to the standard pyrethroid-only net arm. A similar trend was observed with Mansonia spp. A high density of Culex spp. was found both in rainy and dry seasons, while for Mansonia spp., this was mainly observed during the rainy season. These results suggest that the novel insecticides in the dual-a.i. LLINs did not have an additional impact on these species and that pyrethroids might still be effective on them. Further work is required to determine whether these species of mosquitoes have resistance to the insecticides tested in this trial

    Impact of three years of large scale Indoor Residual Spraying (IRS) and Insecticide Treated Nets (ITNs) interventions on insecticide resistance in Anopheles gambiae s.l. in Benin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Benin, Indoor Residual Spraying (IRS) and long-lasting insecticidal nets (LLINs) are the cornerstones of malaria prevention. In the context of high resistance of <it>Anopheles gambiae </it>to pyrethroids, The National Malaria Control Program (NMCP) has undertaken a full coverage of IRS in a no-flood zone in the Oueme region, coupled with the distribution of LLINs in a flood zone. We assessed the impact of this campaign on phenotypic resistance, <it>kdr </it>(knock-down resistance) and <it>ace-1<sup>R </sup></it>(insensitive acetylcholinesterase) mutations.</p> <p>Methods</p> <p>Insecticides used for malaria vector control interventions were bendiocarb WP (0.4 g/m<sup>2</sup>) and deltamethrin (55 mg/m<sup>2</sup>), respectively for IRS and LLINs. Susceptibility status of <it>An. gambiae </it>was assessed using World Health Organization bioassay tests to DDT, permethrin, deltamethrin and bendiocarb in the Oueme region before intervention (2007) and after interventions in 2008 and 2010. <it>An. gambiae </it>specimens were screened for identification of species, molecular M and S forms and for the detection of the West African <it>kdr </it>(L1014F) as well as <it>ace-1<sup>R </sup></it>mutations using PCR techniques.</p> <p>Results</p> <p>The univariate logistic regression performed showed that <it>kdr </it>frequency has increased significantly during the three years in the intervention area and in the control area. Several factors (LLINs, IRS, mosquito coils, aerosols, use of pesticides for crop protection) could explain the selection of individual resistant <it>An. gambiae</it>. The <it>Kdr </it>resistance gene could not be the only mechanism of resistance observed in the Oueme region. The high susceptibility to bendiocarb is in agreement with a previous study conducted in Benin. However, the occurrence of <it>ace-1<sup>R </sup></it>heterozygous individuals even on sites far from IRS areas, suggests other factors may contribute to the selection of resistance other than those exerted by the vector control program.</p> <p>Conclusion</p> <p>The results of this study have confirmed that <it>An.gambiae </it>have maintained and developed the resistance to pyrethroids, but are still susceptible to bendiocarb. Our data clearly shows that selection of resistant individuals was caused by other insecticides than those used by the IRS and LLINs.</p
    corecore