37,931 research outputs found
Flexible Authentication in Vehicular Ad hoc Networks
A Vehicular Ad-Hoc Network (VANET) is a form of Mobile ad-hoc network, to
provide communications among nearby vehicles and between vehicles and nearby
fixed roadside equipment. The key operation in VANETs is the broadcast of
messages. Consequently, the vehicles need to make sure that the information has
been sent by an authentic node in the network. VANETs present unique challenges
such as high node mobility, real-time constraints, scalability, gradual
deployment and privacy. No existent technique addresses all these requirements.
In particular, both inter-vehicle and vehicle-to-roadside wireless
communications present different characteristics that should be taken into
account when defining node authentication services. That is exactly what is
done in this paper, where the features of inter-vehicle and vehicle-to-roadside
communications are analyzed to propose differentiated services for node
authentication, according to privacy and efficiency needs
Spot-like Structures of Neutron Star Surface Magnetic Fields
There is growing evidence, based on both X-ray and radio observations of
isolated neutron stars, that besides the large--scale (dipolar) magnetic field,
which determines the pulsar spin--down behaviour, small--scale poloidal field
components are present, which have surface strengths one to two orders of
magnitude larger than the dipolar component. We argue in this paper that the
Hall--effect can be an efficient process in producing such small--scale field
structures just above the neutron star surface. It is shown that due to a
Hall--drift induced instability, poloidal magnetic field structures can be
generated from strong subsurface toroidal fields, which are the result of
either a dynamo or a thermoelectric instability acting at early times of a
neutron star's life. The geometrical structure of these small--scale surface
anomalies of the magnetic field resembles that of some types of
``star--spots''. The magnetic field strength and the length--scales are
comparable with values that can be derived from various observations.Comment: 4 pages, 2 figures, accepted by Astronomy & Astrophysics Letters;
language improved, 2nd para of Sect. 3 change
Interrelation between radio and X-ray signatures of drifting subpulses in pulsars
We examined a model of partially screened gap region above the polar cap, in
which the electron-positron plasma generated by sparking discharges coexists
with thermionic flow ejected by the bombardment of the surface beneath these
sparks. Our special interest was the polar cap heating rate and the subpulse
drifting rate, both phenomena presumably associated with sparks operating at
the polar cap. We investigated correlation between the intrinsic drift rate and
polar cap heating rate and found that they are coupled to each other in such a
way that the thermal X-ray luminosity from heated polar cap depends only
on the observational tertiary subpulse drift periodicity (polar cap
carousel time). Within our model of partially screened gap we derived the
simple formula relating and , and showed that it holds for
PSRs B094310 and B1133+16, which are the only two pulsars in which both
and are presently known.Comment: 4 page
Spark Model for Pulsar Radiation Modulation Patterns
A non-stationary polar gap model first proposed by Ruderman & Sutherland
(1975) is modified and applied to spark-associated pulsar emission at radio
wave-lengths. It is argued that under physical and geometrical conditions
prevailing above pulsar polar cap, highly non-stationary spark discharges do
not occur at random positions. Instead, sparks should tend to operate in well
determined preferred regions. At any instant the polar cap is populated as
densely as possible with a number of two-dimensional sparks with a
characteristic dimension as well as a typical distance between adjacent sparks
being about the polar gap height. Our model differs, however, markedly from its
original 'hollow cone' version. The key feature is the quasi-central spark
driven by pair production process and anchored to the local pole of a
sunspot-like surface magnetic field. This fixed spark prevents the motion of
other sparks towards the pole, restricting it to slow circumferential drift
across the planes of field lines converging at the local pole. We argue that
the polar spark constitutes the core pulsar emission, and that the annular
rings of drifting sparks contribute to conal components of the pulsar beam. We
found that the number of nested cones in the beam of typical pulsar should not
excced three; a number also found by Mitra & Deshpande (1999) using a
completely different analysis.Comment: 31 pages, 8 figures, accepted by Ap
Frequency dependence of pulsar radiation patterns
We report on new results from simultaneous, dual frequency, single pulse
observation of PSR B0329+54 using the Giant Metrewave Radio Telescope. We find
that the longitude separation of subpulses at two different frequencies (238
and 612 MHz) is less than that for the corresponding components in the average
profile. A similar behaviour has been noticed before in a number of pulsars. We
argue that subpulses are emitted within narrow flux tubes of the dipolar field
lines and that the mean pulsar beam has a conal structure. In such a model the
longitudes of profile components are determined by the intersection of the line
of sight trajectory with subpulse-associated emission beams. Thus, we show that
the difference in the frequency dependence of subpulse and profile component
longitudes is a natural property of the conal model of pulsar emission beam. We
support our conclusions by numerical modelling of pulsar emission, using the
known parameters for this pulsar, which produce results that agree very well
with our dual frequency observations.Comment: 24 pages, 8 figures. Accepted for publication in Ap
- …