23 research outputs found
Tensile and Compressive Mechanical Behaviour of Human Blood Clot Analogues
Endovascular thrombectomy procedures are significantly influenced by the mechanical response of thrombi to the multi-axial loading imposed during retrieval. Compression tests are commonly used to determine compressive ex vivo thrombus and clot analogue stiffness. However, there is a shortage of data in tension. This study compares the tensile and compressive response of clot analogues made from the blood of healthy human donors in a range of compositions. Citrated whole blood was collected from six healthy human donors. Contracted and non-contracted fibrin clots, whole blood clots and clots reconstructed with a range of red blood cell (RBC) volumetric concentrations (5–80%) were prepared under static conditions. Both uniaxial tension and unconfined compression tests were performed using custom-built setups. Approximately linear nominal stress–strain profiles were found under tension, while strong strain-stiffening profiles were observed under compression. Low- and high-strain stiffness values were acquired by applying a linear fit to the initial and final 10% of the nominal stress–strain curves. Tensile stiffness values were approximately 15 times higher than low-strain compressive stiffness and 40 times lower than high-strain compressive stiffness values. Tensile stiffness decreased with an increasing RBC volume in the blood mixture. In contrast, high-strain compressive stiffness values increased from 0 to 10%, followed by a decrease from 20 to 80% RBC volumes. Furthermore, inter-donor differences were observed with up to 50% variation in the stiffness of whole blood clot analogues prepared in the same manner between healthy human donors
The association between human blood clot analogue computed tomography imaging, composition, contraction, and mechanical characteristics
Background Clot composition, contraction, and mechanical properties are likely determinants of endovascular thrombectomy success. A pre-interventional estimation of these properties is hypothesized to aid in selecting the most suitable treatment for different types of thrombi. Here we determined the association between the aforementioned properties and computed tomography (CT) characteristics using human blood clot analogues. MethodsClot analogues were prepared from the blood of 4 healthy human donors with 5 red blood cell (RBC) volume suspensions: 0%, 20%, 40%, 60% and 80% RBCs. Contraction was measured as the weight of the contracted clots as a percentage of the original suspension. The clots were imaged using CT with and without contrast to quantify clot density and density increase. Unconfined compression was performed to determine the high strain compressive stiffness. The RBC content was analysed using H&E staining. Results The 5 RBC suspensions formed only two groups of clots, fibrin-rich (0% RBCs) and RBC-rich (>90% RBCs), as determined by histology. The density of the fibrin-rich clots was significantly lower (31-38HU) compared to the RBC-rich clots (72-89HU), and the density increase of the fibrin-rich clots was significantly higher (82-127HU) compared to the RBC-rich clots (3-17HU). The compressive stiffness of the fibrin-rich clots was higher (178–1624 kPa) than the stiffness of the RBC-rich clots (6–526 kPa). Additionally, the degree of clot contraction was higher for the fibrin-rich clots (89–96%) compared to the RBC-rich clots (11–77%). ConclusionsCT imaging clearly reflects clot RBC content and seems to be related to the clot contraction and stiffness. CT imaging might be a useful tool in predicting the thrombus characteristics. However, future studies should confirm these findings by analysing clots with intermediate RBC and platelet content.</p
The association between human blood clot analogue computed tomography imaging, composition, contraction, and mechanical characteristics
Background Clot composition, contraction, and mechanical properties are likely determinants of endovascular thrombectomy success. A pre-interventional estimation of these properties is hypothesized to aid in selecting the most suitable treatment for different types of thrombi. Here we determined the association between the aforementioned properties and computed tomography (CT) characteristics using human blood clot analogues. MethodsClot analogues were prepared from the blood of 4 healthy human donors with 5 red blood cell (RBC) volume suspensions: 0%, 20%, 40%, 60% and 80% RBCs. Contraction was measured as the weight of the contracted clots as a percentage of the original suspension. The clots were imaged using CT with and without contrast to quantify clot density and density increase. Unconfined compression was performed to determine the high strain compressive stiffness. The RBC content was analysed using H&E staining. Results The 5 RBC suspensions formed only two groups of clots, fibrin-rich (0% RBCs) and RBC-rich (>90% RBCs), as determined by histology. The density of the fibrin-rich clots was significantly lower (31-38HU) compared to the RBC-rich clots (72-89HU), and the density increase of the fibrin-rich clots was significantly higher (82-127HU) compared to the RBC-rich clots (3-17HU). The compressive stiffness of the fibrin-rich clots was higher (178–1624 kPa) than the stiffness of the RBC-rich clots (6–526 kPa). Additionally, the degree of clot contraction was higher for the fibrin-rich clots (89–96%) compared to the RBC-rich clots (11–77%). ConclusionsCT imaging clearly reflects clot RBC content and seems to be related to the clot contraction and stiffness. CT imaging might be a useful tool in predicting the thrombus characteristics. However, future studies should confirm these findings by analysing clots with intermediate RBC and platelet content.</p
Numerical analysis of coronary artery flow
The numerical analysis of coronary artery flow was presented. The importance of time-dependence of the flow pulse, motion of the arterial wall and non-Newtonian properties of blood for the wall shear stress and wall stress distribution was investigated. The analysis showed that characteristic shear rate was such that a viscosity based on infinite shear rate yields significantly different flow patterns and a large influence of wall motion and time-dependent curvature.</p
Numerical analysis of coronary artery flow
The numerical analysis of coronary artery flow was presented. The importance of time-dependence of the flow pulse, motion of the arterial wall and non-Newtonian properties of blood for the wall shear stress and wall stress distribution was investigated. The analysis showed that characteristic shear rate was such that a viscosity based on infinite shear rate yields significantly different flow patterns and a large influence of wall motion and time-dependent curvature.</p
Numerical analysis of coronary artery flow
The numerical analysis of coronary artery flow was presented. The importance of time-dependence of the flow pulse, motion of the arterial wall and non-Newtonian properties of blood for the wall shear stress and wall stress distribution was investigated. The analysis showed that characteristic shear rate was such that a viscosity based on infinite shear rate yields significantly different flow patterns and a large influence of wall motion and time-dependent curvature
In vitro and in silico modeling of endovascular stroke treatments for acute ischemic stroke
Acute ischemic stroke occurs when a thrombus obstructs a cerebral artery, leading to sub-optimal blood perfusion to brain tissue. A recently developed, preventive treatment is the endovascular stroke treatment (EVT), which is a minimally invasive procedure, involving the use of stent-retrievers and/or aspiration catheters. Despite its increasing use, many critical factors of EVT are not well understood. In this respect, in vitro, and in silico studies have the great potential to help us deepen our understanding of the procedure, perform further device and procedural optimization, and help in clinical training. This review paper provides an overview of the previous in vitro and in silico evaluations of EVT treatments, with a special emphasis on the four main aspects of the adopted experimental and numerical set-ups: vessel, thrombus, device, and procedural settings